

Using Road Sensor Data for Official Statistics

Towards a Big Data Methodology

Marco Puts, Martijn Tennekes, Piet Daas

Road sensors

Road sensor data (NDW)

- Passing vehicle counts for each minute (24/7) at about 60.000 sensors in the Netherlands
- Types of sensors:
 - Induction loop
 - Camera
 - Bluetooth
- Length categories (e.g. small, medium, long vehicles)
- Large volume: approx. 230 mln records/day

Challenges at Statistics Netherlands

Volume

- How to deal with large volumes of data?

Historical time series

- How to create a historical time series?

Accuracy

- Can we create accurate statistics based on this data?

Representativity

- Loops are not homogeneous distributed.

Statistical Process

Process

Statistical Process

Transform + Select

Reduce the Volume of the Data

-Select

- Only necessary variables
- Only valid data
- On the main routes (without ramps and interchanges)

-Transform

- Put one day in one record

Statistical Process

Dutch highways

Dutch highways with road sensors

A closer look...

A closer look...

The plots were created with the R-package **tmap** (recently published on CRAN).

- Dutch Highways
- Main routes (no interchange, entrance and exit ramps)

Metadata input

- ESRI shape file of Dutch roads

Road sensor metadata

Road	Direction	Туре	Lat	Long
A79	West	Main	50.8779	5.7502
A79	West	Main	50.8772	5.7625
A79	West	Main	50.8768	5.7737
A79	West	Main	50.8747	5.8082
A79	West	Main	50.8828	5.8650

Map projection

- Dutch National Grid (Rijksdriehoekstelsel)
- Preserves real-world distances

Main routes

Metadata inconsistencies

Errors in metadata

Possible causes:

- Different time references
- Different definitions

Solutions:

- Shape is leading: Impute empty part
- Sensors are leading: Cut off empty part

Remove loose road sensors Extrapolate main route

Projections

ramps

Project road sensors on main routes

Determine points of bifurcation for all entrance and exit

Metadata output: road segments

Statistical Process

Cleaning the data

鬯

Cleaning the data Hidden Markov Model

observation

22

Update

Prediction

吵

Missing Data

25

Smoothing

26

Assumption:

- Arrival times of vehicles follow a Poisson Process
- Gaussian Random Walk

Algorithm:

- Discretization of Probability Density Function

Advantage:

High Accuracy

Disadvantage:

Slow... (due to convolutions)

Cleaning the Data Speeding Up Things

Use Fuzzy Logic

- Discrete PDF => Membership Function
- Convolutions => Dilation operators

Precision/Accuracy

The filter does not introduce extra errors:

- Precision: 3.6%
- Accuracy:+0.13%

Final Process

Estimation

Statistical Process

Questions?

