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People usually consider walking on water or in

thin air a miracle. But I think the real miracle

is not to walk either on water or in thin air, but

to walk on earth. Every day we are engaged in a

miracle which we don’t even recognize: a blue sky,

white clouds, green leaves, the black, curious eyes

of a child – our own two eyes. All is a miracle.

– Thich Nhat Hanh –
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Chapter 1

Introduction

This thesis deals with mathematical models of network formation. In this chapter, we

provide an introduction and an overview of this thesis.

1.1 Networks

People face many different networks in everyday life, for instance transport, telecom-

munication, navigation, friendship, and computer networks. A network is a structure

of nodes that are interconnected by links. For example, a node in a friendship network

represents a person, and a link between two persons represents a friendship between

them. As such, a network can be represented and depicted as a graph (see Figure 1.1).

Figure 1.1: A network depicted as a graph.

1



2 CHAPTER 1. INTRODUCTION

In Table 1.1, several examples of networks are listed with the interpretation of the

corresponding nodes and links. Here, we distinguish two types of networks: endogenous

and exogenous networks. This distinction is characterized by the way the networks are

built.

Network Node Link

Endogenous networks

Friendship network Person Friendship

Online social network1 User profile Inclusion in each other’s contact list

Scientific collaboration network Scientist Collaboration

Trade network Trader Bilateral trade

R&D network Firm Joint R&D activity

World Wide Web Website Hyperlink (URL)

Exogenous networks

Railway network Railway station Railway

Electricity network Power station or building Power line

Computer network (physical) Computer, router, or server Cable or wireless connection

Table 1.1: Examples of networks.

Endogenous networks are built by autonomous decision makers, who correspond to

the nodes. For instance, the bilateral trades among a group of traders define a trade

network. Although there may be trading rules (given by some external party), the

traders themselves determine with whom they trade.

Exogenous networks are built by external parties. Generally speaking, the nodes in

these networks represent objects rather than individuals. As an example, consider a

network in which railway stations are interconnected by railways. A railway company

designs and maintains this network.

As can be seen from Table 1.1, social and economic networks are typically en-

dogenous, while transport and telecommunication networks are typically exogenous.

Observe that a computer network can be either exogenous or endogenous, depending

on its type. Physical computer networks and the Internet are exogenous, while the

World Wide Web (WWW), a network of websites, is endogenous. Notice that the

WWW uses the Internet as a medium.

1.2 Formation of networks

We are particularly interested in how endogenous networks are formed, and how their

architectures are obtained. While exogenous networks can be formed by using optimiza-

tion algorithms, endogenous networks are formed by the interaction of the individual

nodes. To examine the formation of endogenous networks, we use simplified models

1Examples: MySpace, Facebook, Hyves, and LinkedIn (which is business oriented).
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from game theory, which attracted broad attention since Von Neumann and Morgen-

stern (1944) published their book ‘Theory of Games and Economic Behavior’. These

models provide insights in the basic principles of network formation, with the ultimate

objective to study complex models that provide a better understanding of network

formation in reality.

A game is an interactive decision problem of a group of rational agents (often referred

to as players). The decisions of the agents during the game jointly determine the

outcome of a play. Each possible outcome generates a payoff for each agent. A game is

called a non-cooperative game if the agents are not able to make binding agreements.

Otherwise, it is called a cooperative game.

We study network formation games, by which we mean non-cooperative games that

are used to model the process of network formation. The agents who play such a

network formation game correspond to the nodes of a network to be formed. Following

the specific description of the game, they are able to link with other agents and thus

form a network together.

A non-cooperative game is described by four elements. First, it is played by a set of

agents. Second, there are specific rules that define how the game is played. These rules

tell the agents what actions they may take. Third, there are several possible outcomes

of the game. The outcome is determined by the actions that agents took during the

game. Fourth, a payoff function assigns a value to each agent for each possible outcome.

In Table 1.2 these four elements are applied to network formation games.

Elements of a non-cooperative game Elements applied to a network formation game

Agents Agents who correspond to nodes

Rules Rules that define how agents may form links

Outcomes Formed networks1

Payoff function Function that assigns a payoff to each agent

given the formed network1

Table 1.2: Network formation games.

In the literature on network formation games, one focus is on equilibrium networks,

i.e. networks where no agent can gain by a unilateral deviation. Do they exist? If so,

under what conditions? What architectures do they have? In case dynamic network

formation procedures are examined, central questions are the following. Do these

procedures converge to equilibrium networks? If so, what is the speed of convergence?

Moreover, what kind of networks are reached?

In this thesis we only study models with myopic agents, i.e. in choosing their actions,

agents do not look far ahead. For a survey of network formation models with farsighted

agents, we refer to Page and Kamat (2005).

1Bloch and Jackson (2007) propose a model of network formation where the investments of the

agents are part of the outcome and part of the payoff function. We discuss this model on page 6.
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Models using cooperative game theory

A first approach to model network formation as a non-cooperative game is taken by

Aumann and Myerson (1988). They define a game where the possible links are proposed

to the agents one after the other. When a link is proposed, the two adjacent agents have

the opportunity to form it. Once a link is formed, it cannot be removed afterwards.

After all links have been proposed, all non-formed links are again proposed in the same

order as in the first round. The adjacent agents get a final opportunity to form them.

During the game, the history is known to all agents.

Myerson (1991) models network formation as a static non-cooperative game. In this

game, the agents simultaneously announce to which other agents they want to form a

link. A link is only formed if both agents have chosen it.

The payoffs in both games are determined by underlying cooperative games, in

which the coalitions correspond to the components of the networks. An allocation

rule assigns a payoff for each agent given the coalitional structure, i.e. the components

of a network. Myerson (1977) introduces a frequently used allocation rule for these

cooperative games. For an overview of this line of research, we refer to Van den

Nouweland (2005).

The bilateral connections model

Jackson and Wolinsky (1996) introduce the bilateral connections model where the payoff

function is derived directly from the architecture of the formed network. Each agent

pays a certain cost for each adjacent link. Further, each agent receives a certain profit

for each other agent to whom he is connected by a path between them in the network.

The value of this profit decreases with the distance of the shortest path between them

(measured in number of links).

As in the static network formation game proposed by Myerson (1991), links are

formed bilaterally, i.e. when both adjacent agents agree. Jackson and Wolinsky (1996)

introduce pairwise stability as an equilibrium concept. A network is called pairwise

stable if no agent prefers to delete a link and if no pair of non-linked agents prefers to

form a link between them.

Jackson and Wolinsky (1996) focus on the comparison between pairwise stable net-

works and efficient networks (networks for which the sum of payoffs over all agents is

maximal). Several other equilibrium concepts are studied in the literature. For in-

stance, Dutta and Muttuswami (1997) and Jackson and Van den Nouweland (2005)

consider equilibrium concepts that also allow for coalitions larger than pairs to deviate.

For a survey of this line of research, we refer to Jackson (2005).

The unilateral connections model

Bala and Goyal (2000a) introduce a unilateral variant of the connections model, where

agents are able to form links without consent of other agents. Links are directed in
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this model. Each agent forms a set of own links, i.e. links pointing at him. The links

of all agents together define the formed network.

Each agent pays costs for the links that he formed, and receives profits from other

agents via the network. These profits are nonrival , i.e. if they are sent from agent i

to agent j, then they are still available to agent i. A good example of nonrival profits

is information. Bala and Goyal (2000a) study two variants, namely the one-way flow

model and the two-way flow model . In the one-way flow model, agent i observes agent

j, and therefore receives profits, if a directed path exists from j to i, while in the

two-way flow model, agent i observes agent j if an undirected path exists between

them.

A network is called a Nash network if no agent can receive a higher payoff by

unilaterally deviating from his set of links.1

Bala and Goyal (2000a) study a class of payoff functions that strictly decrease in

the number of own links in the formed network, and strictly increase in the number of

observed agents. They also consider a linear case, where each agent pays a fixed cost c

for each own link in the formed network and receives a profit normalized to 1 for each

observed agent. They prove the existence of Nash networks for both the one- and the

two-way flow model, and characterize them for the one-way flow model as being either

directed cycles or empty (i.e. without links), and for the two-way flow model as being

connected networks without (un)directed cycles.

Heterogeneity among link costs and profits is studied by Galeotti (2006) for the one-

way flow model, and by Galeotti et al. (2006) and Haller et al. (2007) for the two-way

flow model. The focus in these papers is on the architecture of strict Nash networks,

i.e. networks in which any deviation gives a strictly lower payoff to the deviating agent.

The existence of Nash networks for the two-way flow model with heterogeneous profits

is proved by Haller et al. (2007).

The model is further extended by incorporating information decay , i.e. the value

of profits that i receives from observing j decreases with the length of the shortest

(un)directed path between them. Due to information decay, agents prefer to be con-

nected to other agents via short paths. This extension is studied by Bala and Goyal

(2000a), Kannan et al. (2007), and Feri (2007).

Bala and Goyal (2000b) extend the model in another way by assigning a reliability

factor to each link. Each formed link actually functions with a certain probability. The

agents still pay the costs for all formed links, but the value of profits depends on the

reliability of the links. Therefore, agents prefer to be connected to other agents via

several paths. They also prefer short paths. This extension is also studied by Haller

and Sarangi (2005) and Haller et al. (2007).

A dynamic game based on this unilateral connections model is studied by Bala and

Goyal (2000a). The initial network is chosen randomly among all possible networks.

At the beginning of each time stage, a random set of agents is identified. Each of these

agents has the opportunity to change his set of links. Then, the network is updated

1The concept of Nash equilibria for non-cooperative games is introduced by Nash (1950).
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and the play proceeds to the next stage. Bala and Goyal (2000a) focus on the speed

of convergence and on the architecture of the outcome networks.

Experimental studies on the unilateral connections model are performed by Falk and

Kosfeld (2003) and by Goeree et al. (2009), among others. For a survey of experimental

work on models of network formation, we refer to Kosfeld (2004).

Models with link investments

In the models we discussed so far, agents have binary choices: to choose a link or not.

Several models are studied where agents not only choose which links they want to form,

but also how much they want to invest in those links.

Bloch and Jackson (2007) propose a model where each agent proposes investments

in each adjacent link. These investments can be positive (offers) or negative (demands).

If the total investment in a link is non-negative, then this link will be formed. Each

agent receives a utility value given the outcome network, and he pays his proposed in-

vestments in the links of the outcome network. Bloch and Jackson (2007) also consider

a setting where each agent can also make offers (no demands) to links where he is not

adjacent to.

Bloch and Dutta (2009) study a model where each agent has a fixed resource which

he has to allocate over his adjacent links. The total amount of allocation on a link

determines the strength of this link, which can be interpreted as its reliability. The

outcome network yields a payoff for each agent. Bloch and Dutta (2009) focus on the

architecture of efficient networks (i.e. for which the sum of all payoffs is maximal) and

equilibrium networks. A similar model, but with directed links, is studied by Rogers

(2006).

Applications

Several applications of the models we discussed are examined in the literature. Jackson

and Wolinsky (1996) introduce the co-author model in which agents are researchers.

Two researchers are linked if they are working together on a project. The synergy of

this cooperation depends on the number of others projects where the researchers are

involved in. This co-author model is a typical example of the bilateral connections

model, since both researchers have to agree on working together.

A typical example of the unilateral connections model is the telephone example

given by Bala and Goyal (2000a,b). The caller initiates a call, i.e. he pays the telephone

company, but both agents can exchange information.

Many applications of endogenous network formation concern oligopoly markets.

Here, the agents represent the firms of an oligopoly. A link between two firms is

equivalent to some relationship between them, e.g. a collaboration or an agreement.

Belleflamme and Bloch (2004) propose a model where a link between two firms means

that they do not sell products on the market of the other. In the models studied by
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Goyal and Moraga-Gonzalez (2001), Goyal and Joshi (2003), and Zirulia (2006), a link

represents a synergy between two firms. By this synergy, they are able to obtain lower

production costs. Goyal and Joshi (2006), and Furusawa and Konishi (2005, 2007)

study a network formation game where the agents represent countries, and where two

countries can only trade goods without tariffs if they are linked.

Besides social and economic networks, also supply networks can be endogenous.

Bergantiños and Lorenzo (2004) study a real-life situation where villagers, who had

insufficient water supply, had to form pipelines in order to connect their houses to the

water supply network. Observe that this application slightly differs from the unilateral

connections model, since the agents are only interested in being connected to a source

node, rather than to each other.

1.3 Outline of this thesis

This thesis is organized as follows. In Chapters 2 to 7, we study unilateral network

formation. The models that we examine are based on the unilateral connections model.

In Chapter 2 we study the one-way flow model. We provide two different proofs for

the existence of Nash networks for games with heterogeneous non-negative profits and

owner-homogeneous link costs, i.e. links that belong to the same owner have equal costs.

For the case where link costs are heterogeneous, we show by means of a counterexample

that Nash networks do not always exist. We provide conditions under which Nash

networks do exist. Further, we characterize the architecture of (strict) Nash networks.

We also study games where the profits may be negative, and we show that for these

games, Nash networks do not always exist. Finally we provide an overview of results

regarding the one-way flow model.

We study the complexity of finding best responses in the one-way flow model in

Chapter 3. A best response of agent i is a set of own links which gives him a maximal

payoff, given the links of the other agents. We show that the problem of finding a

best response is computationally intractable (NP-hard), even if link costs are owner-

homogeneous. Further, we provide an algorithm for finding best responses. We study

the time- and space-complexity of this algorithm, and its average case performance.

Finally, we propose a polynomial-time algorithm for finding a best response in the

two-way flow model.

In Chapter 4 we study a model of unilateral network formation which is inspired

by the one-way model. We introduce local actions, which are: adding, removing, and

replacing an own link, and doing nothing. Global actions are defined as changing the

whole set of own links at once. We propose a framework of axiomatic payoff properties

that are oriented on local actions and inspired by the one-way flow model. For payoff

functions that satisfy these properties, we prove the existence of local-Nash networks,

i.e. networks where no agent can improve by playing a local action. Moreover, we

show that the derived local-Nash networks are also global-Nash (i.e. networks where
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no agent can improve by playing a global action) for payoff functions that satisfy three

properties. Thus, our local approach enables us to prove the existence of global-Nash

networks. We show that the properties are independent from each other. Further, we

relate them to the payoff functions of the one-way flow model and we provide examples

of other payoff functions that satisfy them.

In Chapter 5 we study a dynamic game based on the model of Chapter 4. Starting

with an arbitrary initial network, agents iteratively play local actions. We provide

examples of how this game is played. We show that, whenever all payoff properties

from Chapter 4 are satisfied and agents play good local responses (i.e. improving or

payoff-equivalent actions), within a finite number of iterations this procedure reaches

a network that no agent wants to modify. The obtained network is local-Nash and

moreover, also global-Nash.

In Chapter 6 we provide a full characterization of payoff functions from the one-way

flow model that satisfy our framework of properties from Chapter 4.

In Chapter 7 we generalize the two-way flow model. We develop axiomatic payoff

properties in a way similar to the approach in Chapter 4 with respect to the one-way

flow model. We generalize a proof by Haller et al. (2007) where we make use of our

axiomatic payoff properties. We provide a full characterization of payoff functions from

the two-way flow model that satisfy these properties, and we provide examples of payoff

functions that do not belong to the two-way flow model even though they satisfy all

properties.

In Chapter 8 we examine project support games which are inspired by the model

of network formation proposed by Bloch and Jackson (2007). Here one can think of

a project, consisting of small tasks, that needs to be financed by a set of agents. The

agents propose investments in each task. We study which investments are stable, i.e.

which investments lead to the financing of the project such that there is no incentive

to deviate. We provide an economic example in which project support games can be

applied. Further, we relate stability to the Nash equilibrium concept. Finally, we relate

the model to other literature in this field.

In Chapter 9, we conclude with a discussion of the axiomatic frameworks proposed

in Chapters 4 and 7. We relate those frameworks with two extensions of the unilat-

eral connections model: information decay and imperfectly reliable links. Finally, we

provide recommendations for further research.

An overview of the notations and definitions that we use, is provided on page 125

and 126.



Chapter 2

Nash networks in the one-way

flow model

In social and economic networks, agents (e.g. persons or organizations) are able to

share valuable information. We study the formation of these networks by modeling it

as a non-cooperative game. Links are directed in our game model. Simultaneously and

independently, each agent forms a set of links pointing at him. The links of all agents

together define the outcome network, which yields a payoff for each agent.

In this chapter, we focus on specific payoff functions, which consist of a cost and a

profit part. Each agent pays a certain cost for each formed link. Further, each agent i

receives a certain profit (e.g. information) from each other agent j, if a directed path

from j to i exists. In other words, the direction of the links in the outcome network

corresponds to the flow of profits. For this reason, the model of network formation

with this payoff structure, is called the one-way flow model .

A network is called a Nash network if no agent can gain a strictly higher payoff

by deviating from his set of formed links. In reality, network formation is a dynamic

process. But since we focus on Nash networks in this chapter, we model network

formation as a static game.

The one-way flow model is proposed by Bala and Goyal (2000a). They characterize

and prove the existence of Nash networks for games where profits and link costs are

homogeneous, i.e. all profits are equal and all links are equally expensive. Galeotti

(2006) studies heterogeneous profits and link costs and he characterizes the architecture

of strict Nash networks for various settings while assuming such Nash networks exist.

In this chapter we provide two different proofs for the existence of Nash networks

for games with heterogeneous profits and owner-homogeneous link costs, i.e. links that

belong to the same owner have equal costs. The first proof is by induction; to show that

a Nash network exists for a game with n agents, we will use the induction hypothesis

that a Nash network exists for each game with less than n agents. The second proof is

9
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based on the approach by Billand et al. (2008). In short, the idea behind this approach

is that a sequence of networks is constructed such that each successive network is at

least as good for each agent. We provide an alternative and easy accessible proof based

on this idea.

We show by means of a counterexample that Nash networks may not exist for

games where link costs are heterogeneous, even though they are arbitrarily close to the

situation of owner-homogeneity. We provide conditions on the profits and link costs

under which Nash networks do exist.

Further, we study the architecture of Nash networks. Bala and Goyal (2000a) show

that for games with homogeneous link costs and profits, a Nash network is either empty

or minimal strongly connected. In this chapter, we provide a full characterization of

Nash network architectures for games with various settings of heterogeneity among

link costs and profits. We show that Nash networks are fully characterized as minimal

networks when link costs are heterogeneous. Further, we show that when link costs are

owner-homogeneous, Nash networks also have the property that for each agent with at

least two outgoing links, each of these links is contained in a cycle.

We also study the existence and architecture of strict Nash networks, i.e. networks

where no agent can gain a higher or equal payoff by deviating. For homogeneous and

strictly positive link costs, Bala and Goyal (2000a) prove the existence of strict Nash

networks. By means of a counterexample, we show that strict Nash networks do not

always exist for games with owner-homogeneous link costs. As for the architecture of

strict Nash networks, we provide an overview of the results obtained in the literature.

Finally, we extend this model by allowing negative profits. The interpretation of

negative profits is that an agent may not want to be connected to a specific other

agent, even if there is no cost for this connection. This extension can be very realistic

in network formation. For instance, there are websites on the World Wide Web that

you want to avoid, or there may be a person in a friendship network you do not like.

We show by means of a counterexample that the existence of Nash networks for games

with negative profits is not guaranteed. Further, we characterize Nash networks for

these games as minimal networks.

This chapter is outlined as follows. First, in Section 2.1, we introduce the model

and provide notations that we will use throughout this chapter. These notations will

also be used in other chapters of this thesis. In Section 2.2 we study the existence

of Nash networks. For games with owner-homogeneous link costs, we provide two

different proofs of existence. For games with heterogeneous link costs, we provide a

counterexample, and conditions for which Nash networks do exist. Section 2.3 deals

with the architecture of Nash networks. We provide a full characterization of network

architectures for games with heterogeneous link costs as well as for games with owner-

homogeneous link costs. In Section 2.4 we examine the existence and architecture of

strict Nash networks. In Section 2.5 we study games with possibly negative profits.

Finally, in Section 2.6 we provide an overview of the results obtained in the literature

and in this chapter with respect to Nash networks in the one-way flow model.
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This chapter is partly based on Derks et al. (2008a) and Derks and Tennekes (2008).

2.1 Model and notations

Let N = {1, . . . , n} denote a finite set of agents. We define a network g on the agent

set N as a set of links g ⊆ N × N , where loops are not allowed, i.e. (i, i) 6∈ g for all

i ∈ N . We formally define a network as a directed graph, but since we study network

formation, we refer to it as a network.1

For convenience we will use the symbols ‘+’ and ‘−’ for the union respectively the

set exclusion of two networks, or of a network and a single link. In case of ambiguity,

these operations are applied from left to right. For instance, the notation g− g′+ (j, i)

stands for (g \ g′) ∪ {(j, i)}.
A directed path from j to i in g is a sequence of distinct agents i1, i2, . . . , ik with

k ≥ 1, such that j = i1, i = ik and (is, is+1) ∈ g for each s = 1, 2, . . . , k − 1. Notice

that for k = 1 we have that i = i1 is a trivial directed path without links from i

to himself. An undirected path is defined analogously, but here, either (is, is+1) or

(is+1, is) is contained in g for each s = 1, 2, . . . , k − 1. A cycle is defined in the same

way as a directed path with k ≥ 2, and with the exception that i1 = ik. Thus, a cycle

is always directed, unless mentioned otherwise. Let the outdegree of agent i in network

g be defined as the number of outgoing links of i in g.

Agent j is called active in g if j is a begin- or endpoint of a link in g. We define gj

for agent j to be the following subset of g:

gj = {(k, `) : (k, `) ∈ g, and an undirected path between ` and j exists in g}, (2.1)

and we refer to gj as the component of g where j is active. Observe that gj is empty

in case j is isolated (i.e. not active) in g. Subset g′ is a called a component if an agent

j ∈ N exists such that g′ = gj .

Let the set of agents that i observes in network g be defined as

Ni(g) = {j ∈ N : a directed path from j to i exists in g}

and let

Nd
i (g) = {j : (j, i) ∈ g}.

Note that i ∈ Ni(g), and i 6∈ Nd
i (g).

For each agent i, let πi : G → R be a payoff function, where G is the set of all

possible networks on N . Let π = (πi)i∈N be a joint payoff function. We will use the

following class of payoff functions, which is proposed by Galeotti (2006):

πi(g) =
∑

j∈Ni(g)

vij −
∑

j∈Nd
i (g)

cij ∀i ∈ N. (2.2)

1In graph theory, it is common to define a directed graph as a set of nodes and a set of arcs. Since

in our case the set of agents is fixed, it is left out of the definition of a network.
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Here vij is the profit that agent i receives from observing j and cij is the cost of link

(j, i) for agent i. The profits and costs are assumed to be non-negative throughout this

chapter, except for Section 2.5 in which we study games where profits may be negative.

We refer to these payoff functions as B&G-1 functions, since Bala and Goyal (2000a)

introduced the one-way flow model.

We follow other literature on one-way flow models in the sense that the direction of

the links indicates information flow. Consequently link (j, i), which is depicted from j

to i, is owned and paid by agent i.

We say that link costs are homogeneous if there is a constant c with cij = c for all

i, j ∈ N . We say that link costs are owner-homogeneous if for each agent i there is a

constant ci with cij = ci for all j ∈ N . Otherwise, link costs are heterogeneous. These

definitions also apply to the profits.

In this chapter we study a non-cooperative game. This game is played by the agents

in N . Simultaneously and independently, each agent i chooses a possibly empty set S

of agents he wants to connect to by creating the links (j, i), for each j ∈ S. Together,

the links of all agents form a network g ∈ G. Then, each agent i receives a payoff πi(g).

Since each agent wants to maximize his payoff in response to what the other agents are

doing, the focus of this chapter is on Nash networks, i.e. networks in which no agent

can gain from a unilateral deviation.

We define an action of agent i by a set of agents S ⊆ N \ {i}. The network that

results after i chooses to link up with the agents in S w.r.t. network g, is described by

g−i +
{

(j, i) : j ∈ S
}
,

with g−i denoting the network obtained from g after removing the links (j, i) ∈ g owned

by i. An action S∗ of agent i is called a best response with respect to πi and g if

πi
(
g−i + {(j, i) : j ∈ S∗}

)
≥ πi

(
g−i + {(j, i) : j ∈ S}

)
for all actions S ⊆ N \ {i}.

A network g is a Nash network if Nd
i (g) is a best response for all i ∈ N , i.e. if for

each agent i ∈ N
πi(g) ≥ πi

(
g−i + {(j, i) : j ∈ S}

)
for all actions S ⊆ N \ {i}.

A network g is a strict Nash network if Nd
i (g) is the unique best response for each

agent i ∈ N .

2.2 Existence of Nash networks

In this section we provide two different proofs for the existence of Nash networks

for games with owner-homogeneous link costs. The first proof (Section 2.2.1) is by

induction and the second one (Section 2.2.2) by construction. A third proof is provided
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in Chapter 4, where the existence of Nash networks is proved for a more general class

of payoff functions.

In Section 2.2.3, we study games with heterogeneous link costs. We provide an

example for which Nash networks do not exist, even though link costs are arbitrarily

close to the situation of owner-homogeneity. Furthermore, we provide conditions on

the profits and link costs under which Nash networks do exist.

2.2.1 Proof by induction

It is common in the literature to consider the set of agents, the costs, and the profits

as fixed. However, our approach requires the comparison of different game situations.

To facilitate this approach we define a (non-cooperative) one-way flow game to be a

triple (N, v, c) on agent set N , with profits v = (vij)i,j∈N and costs c = (cij)i,j∈N,i6=j

that define B&G-1 functions πi, i ∈ N , as described in (2.2).

An agent k with no own links in a network g is only of interest for those agents i

with cik ≤ vik, since

πi(g + (k, i)) =
∑

j∈Ni(g+(k,i))

vij −
∑

j∈Nd
i (g+(k,i))

cij

=
∑

j∈Ni(g)

vij + vik −
∑

j∈Nd
i (g)

cij − cik

= πi(g) + vik − cik. (2.3)

For costs sufficiently small, the so-called cycle networks are Nash networks. Cycle

networks consist of one cycle joining all agents (see Figure 2.1).

Figure 2.1: Cycle network.

Lemma 2.2.1. For an owner-homogeneous cost one-way flow game (N, v, c), with

ci ≤
∑

j∈N,j 6=i

vij for all i ∈ N, (2.4)

all cycle networks are Nash networks.
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Proof. Let g be a cycle network.

Each agent i obtains πi(g) =
∑

j∈N vij − ci. If agent i plays ∅ then he obtains

vii, which is at most πi(g) by (2.4). If he plays a non-empty action, his payoff will

be at most πi(g), because he already receives maximal profits in g (since profits are

non-negative), with only one own link. Therefore, g is a Nash network. �

Observe that non-negativity of the profits is required for Lemma 2.2.1. In Exam-

ple 2.5.1 of Section 2.5 we examine a game with negative profits where no cycle network

is Nash, although condition (2.4) is satisfied.

In the owner-homogeneous cost case, we also observe the following: if link (j, k) is

present in g, then linking up with agent k is at least as good for an agent i 6= j, k, as

linking up with j:

πi(g + (k, i)) ≥ πi(g + (j, i)) whenever (j, k) ∈ g. (2.5)

In the next theorem, we prove the existence of Nash networks for games with owner-

homogeneous link costs. This proof is based on induction, but constructive in nature.

Either any cycle network constitutes a Nash network or there is an agent who is not

interested in being ‘involved’.

In the latter case, there may be an agent i who is interested in linking up with this

uninvolved agent. In that case the profit values are adapted as described in the proof,

and a Nash network is searched in the situation without the uninvolved agent; next,

this network is extended by connecting the uninvolved agent with agent i.

The case where no agent is interested in linking up with this uninvolved agent is

somewhat simpler, as any Nash network on the set of agents excluding the uninvolved

agent is also a Nash network on the full set of agents.

Theorem 2.2.2. Nash networks exist for any one-way flow game with owner-homoge-

neous costs.

Proof. We will prove the theorem by induction. One-way flow games with only one

agent trivially have a Nash network. Suppose that (N, v, c) with N = {1, 2, . . . , n} is an

owner-homogeneous cost one-way flow game that does not have a Nash network, while

all one-way flow games with less than n agents do have Nash networks. According to

Lemma 2.2.1, this implies that there is an agent i with ci >
∑

j∈N,j 6=i vij .

Without loss of generality assume i = n. Observe that the best response of agent n

in any network is the empty set. Consider the owner-homogeneous cost one-way flow

game (N ′, v′, c′), with N ′ = N\{n}, and v′ and c′ equal to v and c restricted to the

agents in N ′. Let π′i denote the B&G-1 function for agent i in (N ′, v′, c′). It is clear

that π′i(g) = πi(g) for each network g on N ′, and i 6= n.

Since N ′ has n− 1 agents, (N ′, v′, c′) has a Nash network, say g′. Consider g′ as a

network on N , and recall the assumption that (N, v, c) does not have a Nash network.

Therefore, there is an agent k in (N, v, c) who does not play his best response in g′. Of

course k 6= n, as Nd
n(g′) = ∅ is obviously his best response. Let T ⊆ N \ {k} be a best
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response of k in g′, and suppose n 6∈ T . Then (g′)−k + {(j, k) : j ∈ T} is a network in

N ′ so that

π′k(g′) = πk(g′)

< πk
(
(g′)−k + {(j, k) : j ∈ T}

)
= π′k

(
(g′)−k + {(j, k) : j ∈ T}

)
,

which is a contradiction with g′ being a Nash network for (N ′, v′, c′).
Now suppose that n ∈ T . Without loss of generality assume k = 1. From n ∈ T and

Nd
n(g′) = ∅ we conclude that c1 ≤ v1n must hold (see (2.3)). Consider the following

adapted profits v∗ = (v∗ij)i,j∈N ′ :

v∗ij =


vij if j 6= 1,

vi1 + vin if i 6= 1, j = 1,

v11 + v1n − c1 if i, j = 1.

Observe that these values are non-negative. Let π∗i denote the B&G-1 functions in

(N ′, v∗, c′). The profits v∗ij are chosen such that π∗i (g) = πi(g + (n, 1)) holds for all

networks g on N ′, and for all i ∈ N ′.
By assumption, the one-way flow game (N ′, v∗, c′) has a Nash network, say g∗; since

(N, v, c) does not have a Nash network, there is an agent i in N who can improve in

the network g∗ + (n, 1), in the context of the game (N, v, c), say by choosing the links

with the agents in S ⊆ N\{i}. This agent is not n because Nd
n(g∗ + (n, 1)) = ∅.

Suppose i 6= 1. If n ∈ S, then according to (2.5), the action S\{n} ∪ {1} is at least

as good as S; therefore we may assume n 6∈ S. The resulting network (g∗+ (n, 1))−i +

{(j, i) : j ∈ S}, after i performs the improvement, yields a higher payoff for agent i.

Then

π∗i (g∗) = πi(g
∗ + (n, 1))

< πi
(
(g∗ + (n, 1))−i + {(j, i) : j ∈ S}

)
= πi

((
g∗−i + {(j, i) : j ∈ S}

)
+ (n, 1)

)
= π∗i

(
g∗−i + {(j, i) : j ∈ S}

)
≤ π∗i (g∗),

where the second inequality holds because of g∗ being a Nash network for (N ′, v∗, c′).
Thus, we arrived at a contradiction, so that we must have i = 1.

Due to c1 ≤ v1n, and agent n having no own links, we may assume n ∈ S (see the

observation concerning (2.3)). Then

π∗1(g∗) = π1(g∗ + (n, 1))

< π1
(
g∗−1 + {(j, 1) : j ∈ S}

)
= π1

(
g∗−1 +

{
(j, 1) : j ∈ S\{n}

}
+ (n, 1)

)
= π∗1

(
g∗−1 +

{
(j, 1) : j ∈ S\{n}

})
≤ π∗1(g∗);
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a contradiction. We conclude that (N, v, c) must have a Nash network. �

Observe that the Nash networks we obtain have at most one cycle, if the Nash

networks excluding the uninvolved agent also have at most one cycle. The same ap-

plies when considering networks where agents have an outdegree of at most one. The

following corollary is now easily established.

Corollary 2.2.3. Nash networks exist, with at most one cycle and maximum outdegree

of at most 1, for any one-way flow game with owner-homogeneous costs.

There may also exist Nash networks with multiple cycles and with outdegrees higher

than 1. Consider the following example.

Example 2.2.4. Let n = 7, and let cij = 1 and vij = 1 for all i, j ∈ N . Consider the

network with two cycles that is depicted in Figure 2.2.

j

i

k

Figure 2.2: A Nash network with two cycles.

Notice that agent i has two outgoing links. It can be verified that this network is a

Nash network. Observe that this network is not strict Nash, since j can replace (i, j)

by (k, j), which yields the same payoff. ♦

We revisit this example in Section 2.4 where we examine the existence and archi-

tecture of strict Nash networks. In Section 2.3 we examine the architecture of Nash

networks.

2.2.2 Proof by construction

Consider the transformation π′i(g) = πi(g) − vii. Since this transformation has no

influence on the strategic behavior of agent i, we may assume that vii = 0.

Let g−ij = gj−i + (j, i), where gj−i means (g−i)j , i.e. the component of g−i where j

is active. By the non-negativity of the profits (and vii = 0), it is immediate that

πi(g) ≤ πi
(
g − (j, i)

)
+ πi(g−ij) for all (j, i) ∈ g. (2.6)

Therefore, when agent i plays a best response then πi(g−ij) ≥ 0 for each j ∈ Nd
i (g).

We say that link (j, i) is beneficial in g when πi(g−ij) ≥ 0, and a network g is called

beneficial when all its links are beneficial. Observe that a Nash network is beneficial.
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Let a network be proper if the outdegree of each agent is at most 1. In a proper

network g, an agent i observes each agent j ∈ Ni(g) via a unique directed path, and by

this observation it is not hard to see that equality holds in (2.6), whenever g is proper.

For any network g let C(g) denote the set of agents located on a cycle in g. Further,

let D(g) denote the set of agents who observe at least one agent in C(g), i.e. D(g) =

{i : Ni(g) ∩ C(g) 6= ∅}.
Assuming that the agents are numbered 1, 2, . . . , n there is a unique ordering s1,

s2, . . . , sd of agents in D(g), with sk−1 < sk for each k = 2, . . . , d = |D(g)|. Consider

the following network ĝ, defined by ĝ = g in case d = 0, and for d ≥ 2 (notice that d

cannot be 1, since a cycle contains at least two agents) defined by:

ĝ = {(s1, s2), . . . , (sd−1, sd), (sd, s1)}+ {(j, i) ∈ g : j 6∈ D(g)}.

An example of this network is depicted in Figure 2.3.

g ĝ

Figure 2.3: Network g with the corresponding network ĝ.

Lemma 2.2.5. If for a network g the agents outside D(g) have at most one outgoing

link then ĝ is proper.

Proof. Each agent in D(g) has exactly one outgoing link in ĝ, namely the one on the

cycle. Each agent outside D(g) has the same outdegree in ĝ as in g. �

Naturally, we set ĝ = g whenever D(g) = ∅, i.e. whenever there are no cycles in g.

Otherwise, ĝ has exactly one cycle. Notice also that an agent owns no more links in ĝ

than in g, so that in the owner-homogeneous costs situation the agents in ĝ face costs

at most as in g. Furthermore, the agents observe the same or more agents in ĝ:

Lemma 2.2.6. Ni(g) ⊆ Ni(ĝ) for each agent i.

Proof. Let j ∈ Ni(g).
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Suppose i 6∈ D(g), then any directed path from j to i in g does not visit an agent

in D(g), and therefore it is also a directed path in ĝ. This implies that i observes j in

ĝ: j ∈ Ni(ĝ).

Now suppose i ∈ D(g). If also j ∈ D(g) then i observes j via the cycle in ĝ. So,

let j 6∈ D(g), and let k be the first agent in D(g) on a directed path from j to i in g.

Then, the directed subpath from j to k is also a directed path in ĝ, implying j ∈ Nk(ĝ).

Since k ∈ Ni(ĝ), we have j ∈ Ni(ĝ). �

Lemma 2.2.7. Let π be a joint B&G-1 function with owner-homogeneous link costs.

If a network g is beneficial, then network ĝ is also beneficial.

Proof. Let g be beneficial, and let (j, i) ∈ ĝ. We prove that (j, i) is beneficial in ĝ.

Suppose j 6∈ D(g). This implies (j, i) ∈ g. For k ∈ Ni(g−ij) there is a directed path

from k to i via link (j, i) in g, and none of the visited agents are members of D(g)

(except possibly i), so that this path is also present in ĝ−ij . This implies k ∈ Ni(ĝ−ij),
and therefore,

πi(ĝ−ij) =
∑

k∈Ni(ĝ−ij)

vik − ci ≥
∑

k∈Ni(g−ij)

vik − ci = πi(g−ij).

Beneficiality of link (j, i) in g therefore implies the beneficiality of (j, i) in ĝ.

Now, suppose j ∈ D(g). Then the link (j, i) is a link of the cycle of ĝ. It is evident

that D(g) ⊆ Ni(ĝ−ij). Also, D(g) ∩ Nd
i (g) 6= ∅, say k ∈ D(g) ∩ Nd

i (g). We know

that (k, i) is beneficial in g. Since link costs are owner-homogeneous, i.e. cik = cij , we

conclude that link (j, i) is beneficial in ĝ whenever

Ni(g−ik) ⊆ Ni(ĝ−ij). (2.7)

So, let r ∈ Ni(g−ik). If r ∈ D(g) then also r ∈ Ni(ĝ−ij) as we mentioned before. Thus,

assume r 6∈ D(g). There is a directed path from r to k in g−i. Let r′ be the first

agent from D(g) on this path. Then the directed subpath from r to r′ is present in ĝ.

Extend this path with the directed path from r′ to j on the cycle of ĝ, thus obtaining

a directed path from r to j in ĝ. This path does not visit agent i since i is not on the

directed path from r to r′, and also i is not located on the cycle between r′ and j since

i is found on the cycle right after agent j. Hence, r ∈ Ni(ĝ−ij), implying (2.7). We

conclude that (j, i) is beneficial in ĝ. �

Theorem 2.2.8. Let π be a joint B&G-1 function with owner-homogeneous link costs.

Then, the following procedure terminates in a finite number of steps at a proper Nash

network.

Step 0: Let t = 1, and gt = ∅;

Step 1: If gt is Nash then STOP.
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Step 2: Let agent i perform a best response in gt, with as many links as possible and,

in case of indifference, with as many observed agents as possible, and let gt+1 be

the resulting network;

Step 3: Let gt+2 = ĝt+1;

Step 4: Let t = t+ 2, and return to Step 1.

Proof. Let i be an agent who applies a best response B to gt with as many links as

possible and, in case of indifference, with as many observed agents as possible, obtaining

gt+1. Suppose that gt is proper and beneficial. We prove that (i) Ni(gt+1) ⊃ Ni(gt),

(ii) gt+2 is beneficial, and (iii) gt+2 is proper.

(i) Let j ∈ Nd
i (gt), and suppose j 6∈ B. Since gt is proper it follows that agent

j is the unique agent who observes all agents in Nj

(
(gt)

j
−i
)
. This shows that

whenever Nj

(
(gt)

j
−i
)
∩ B 6= ∅, then j ∈ B. Since we assumed j 6∈ B, it follows

that Nj

(
(gt)

j
−i
)
∩B = ∅, so that

πi
(
gt+1 + (j, i)

)
= πi(gt+1) + πi

(
(gt+1)−ij

)
= πi(gt+1) + πi

(
(gt)−ij

)
≥ πi(gt+1).

The latter inequality is due to the beneficiality of the links in gt. Since the best

response B is chosen as large as possible, and the action B ∪ {j} is at least as

good as B, we arrive at a contradiction. Hence,

Nd
i (gt) ⊆ B. (2.8)

SinceB is a strict improvement, we haveNd
i (gt) ⊂ B, implyingNi(gt+1) ⊃ Ni(gt).

(ii) By (2.8) it follows that gt ⊆ gt+1, and this proves the beneficiality of the links

(j, `) ∈ gt in gt+1. As for the added links (j, i), with j ∈ B\Nd
i (gt) we observed

already (see (2.6)) that these links are beneficial in gt+1. So, gt+1 is beneficial,

and because of Lemma 2.2.7, we conclude that ĝt+1 = gt+2 is beneficial.

(iii) To show that gt+2 is proper, by Lemma 2.2.5 we only need to check the outde-

grees of the agents outside D(gt+1) in gt+1. Only the outdegree of the agents in

B\Nd
i (gt) are raised by 1, with respect to the outdegree in the proper network

gt. Therefore, we only need to check that the agents in B\
(
Nd

i (gt) ∪ D(gt+1)
)

have outdegree 0 in gt.

Consider an agent j ∈ B\Nd
i (gt), and suppose that his outdegree in gt is 1, say

(j, k) ∈ gt. It follows that a directed path from k to j exists in gt, for otherwise i

observes more agents by playing B \ {j}∪{k} than by playing B (agent k is only

observed in the first case), which contradicts our assumption in Step 2. Therefore

j is necessarily located on the cycle of gt, i.e. j ∈ D(gt). Observe that D(gt) is a

subset of D(gt+1), so that we conclude that j 6∈ B\
(
Nd

i (gt) ∪ D(gt+1)
)
. Hence,

all agents in B\
(
Nd

i (gt) ∪D(gt+1)
)

have outdegree 0 in gt.
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Observe that we start the procedure with a beneficial, proper network. By Lemma

2.2.6 and part (i) we conclude that the total number of observed agents of the con-

structed networks does not decrease, and strictly increases when Step 2 is performed.

Therefore, the procedure has to terminate with a network that is Nash. Observe that

this network is also beneficial and proper. �

2.2.3 Heterogeneous link costs

For games with heterogeneous costs, Nash networks do not always exist as we will see

in the next example. The link costs in this example can be chosen arbitrarily close to

the situation of owner-homogeneity.

Example 2.2.9. Let N = {1, 2, 3, 4} be the set of agents, and let π be the following

joint B&G-1 function with homogeneous profits and heterogeneous link costs. Let

vij = 1 for all i, j with i 6= j, and let vii = 0 for all i. The numbers next to the links

in Figure 2.4(a) indicate the costs of these links. Here, ε is a strictly positive number

which can be chosen arbitrarily close to 0. The costs of the links that are not depicted

in this figure are the following:

∗ links directed to agent 1 have cost 1 + ε,

∗ links directed to agent 2 have cost 2 + ε,

∗ links directed to agents 3 and 4 have cost 3 + ε,

1

3

2

4

1-ε

3-ε 3-ε

2-ε

1

3

2

4

(a) (b)

Figure 2.4: (a) the link costs, and (b) the network obtained when agent 4 plays ∅ and

the other agents play best responses.

The best response of agent 4 to any network is either {2} or ∅, since those are the

only actions for which agent 4 may have a non-negative payoff.

First, suppose that agent 4 plays {2} as a best response in a Nash network. Con-

sequently, the unique best response of agent 1 is {4}. Agent 2 has one unique best

response to this situation: {1}. Finally, agent 3 has one unique best response, which

is {2}. The obtained network is the same as depicted in Figure 2.4(a). It follows that

{2} is not a best response of agent 4, since ∅ gives a higher payoff. Hence, there is no

Nash network in which agent 4 plays {2}.
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Now suppose that agent 4 plays ∅ as a best response in a Nash network. Agent 1

will include 4 in every best response to this situation. Then, the unique best response

for agent 2 is {1}. To this situation, the unique best response of agent 3 is {2}. Hence,

the unique best response of agent 1 is {3, 4}. The obtained network is depicted in

Figure 2.4(b). Now agent 4 has a unique best response to this new situation, which is

{2}. This contradicts our assumption of agent 4 playing ∅ in a Nash network. Hence

no Nash networks exist. ♦

Billand et al. (2008) claim that Nash networks always exist if for all i, j, j′ ∈ N holds

that |cij − cij′ | < vi (see their Proposition 3). However, in Example 2.2.9, link costs

are close to owner-homogeneity, i.e. |cij − cij′ | ≤ 2ε for all i, j, j′ ∈ N . Since vij = 1

for all i, j ∈ N , we have |cij − cij′ | < 1 = vi for ε < 1
2 . Therefore, this example is a

counterexample for Proposition 3 in Billand et al. (2008).

Although Nash networks do not always exist when link costs are heterogeneous,

there are conditions under which they do exist:2

Proposition 2.2.10. Let π be a joint B&G-1 function. If

cij ≤ vij + cik for all i, j, k ∈ N (2.9)

cij ≤
∑

k∈N,k 6=i

vik for all i, j ∈ N (2.10)

then any cycle network is a Nash network.

Proof. Let g be a cycle network. Suppose it is not Nash, say i can improve by playing

S̃. Let g̃ be the obtained network. Further, let S = {j} be his current action, i.e. link

(j, i) is on the cycle in g (see Figure 2.5).

i

j

Figure 2.5: Network g.

By (2.10) it follows that πi(g) ≥ 0. Since S̃ is a strictly improving action, we

conclude that S̃ 6= ∅.
Suppose that j 6∈ S̃. Let k be any agent in S̃. Further, let M = Ni(g̃) be the set of

agents whom i observes in g̃. Clearly, j 6∈M .

2These results are obtained from personal communication with S. Sarangi (Louisiana State Uni-

versity, USA), P. Billand, and C. Bravard (Jean Monnet University, France).
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Since link costs are non-negative, we have

πi(g̃) ≤
(∑
`∈M

vi`

)
− cik

≤
(∑
`∈M

vi`

)
+ vij − cij by (2.9)

≤
(∑
`∈N

vi`

)
− cij since j 6∈M and M ∪ {j} ⊆ N

= πi(g).

This contradicts S̃ being a strict improvement.

Hence j ∈ S̃. Since Ni(g−ij) = N and link costs are non-negative, we must have

S̃ = {j}; again a contradiction. We conclude that g is a Nash network. �

Observe that the B&G-1 functions of agents 3 and 4 in Example 2.2.9 do not satisfy

condition (2.10), because the link cost 3 + ε exceeds the total profit, which is 3.

As an alternative for condition (2.10), consider the following condition:

cij + cik >
∑

r∈N,r 6=i

vir for all i, j, k ∈ N. (2.11)

Due to this condition, it is not worthwhile to have more than one own link. Therefore,

we can already observe that for joint payoff functions that satisfy (2.11), in any Nash

network, each agent has at most one own link. Combining (2.11) with (2.9) enables us

to prove the existence of Nash networks:

Proposition 2.2.11. Let π be a joint B&G-1 function. If π satisfies (2.9) and (2.11)

then Nash networks exist where each non-empty component is either a cycle or a di-

rected path.

Proof. Consider a network g where all agents owning a link have a non-negative payoff.

Observe that these agents have exactly one link, due to (2.11). Also, assume that each

non-empty component of g is either a cycle or a directed path. The empty network

fulfills this architecture, so that we may assume that g is chosen to have as many links

as possible, i.e., any network with more links contains an agent with negative payoffs

or a component which is not a cycle or a directed path.

Now suppose that this network g is not Nash, say agent i can improve. Distinguish

two cases:

(A) agent i has a (unique) link in g, say (j, i), and

(B) agent i has no links in g.

Case A Since i has a non-negative payoff in g, and (j, i) is his only link in g, it follows

that πi(g−ij) ≥ 0. Using (2.11), we conclude that the improvement of i must be the



2.2. EXISTENCE OF NASH NETWORKS 23

replacement of (j, i) with another link, say (k, i), i.e. πi(g − (j, i) + (k, i)) > πi(g).

Observe that

0 ≤ πi(g) = πi(g−ij) = πi(g−i + (j, i)) < πi(g−i + (k, i)) = πi(g−ik)

Therefore, we have πi(g−ij) + πi(g−ik) > 0. Because of (2.11), it follows that πi(g−i +

(j, i) + (k, i)) < 0. Therefore, we must have

πi(g−i + (j, i) + (k, i)) 6= πi(g−ij) + πi(g−ik),

and this is only possible if there is an agent r ∈ N who is observed by agent i both

via agent j and agent k. This implies that on the paths from r to j and from r to

k, there is an agent with outdegree greater than 1, which is in contradiction with the

architecture described above. Therefore, case A does not occur.

Case B By (2.11), it follows that agent i’s improvement is the addition of one link,

say (k, i). If agent k is active in a component of g that is a directed path, then, due to

(2.9), k may be chosen to be the head node of this path. The network

g′ = g + (k, i)

fulfills the architecture as described previously. Also, all agents receive non-negative

payoffs in g′, since profits are non-negative. This contradicts the fact that g is chosen

with maximum number of links with respect to these properties. Therefore, k is active

in a cycle component, and there is an agent r with (k, r) ∈ g. The component in g,

where i is active, is necessarily empty or a directed path, with i being the tail node.

Let j be the head node of this path (with j = i in case gi = ∅). Then one can easily

show that the network

g′′ = g − (k, r) + (k, i) + (j, r)

fulfills the architecture as described previously. The networks g and g′′ are depicted in

Figure 2.6.

i j

rk

i j

rk

g g′′

Figure 2.6: Described situation in networks g and g′′. Dashed arcs are directed paths.

All agents receive non-negative payoffs in g′ = g + (k, i); due to (2.9) agent r can

improve in g′ by replacing link (k, r) with (j, r), thus obtaining g′′. The payoffs of the

other agents do not decrease, so all agents receive non-negative payoffs in g′′, and again

this is in contradiction with the choice of g as there is one more link in g′′ than in g.

�
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2.3 Architecture of Nash networks

In this section we provide a characterization of the architecture of Nash networks, for

games with various settings of homogeneity and heterogeneity among link costs and

profits. First of all, we require the following definitions. A network g is called strongly

connected if each agent in N observes all other agents. A network g is called minimal

if for each link (j, i) ∈ g, j is not observed by i in network g − (j, i).

Bala and Goyal (2000a) study the architecture of Nash networks of games with

homogeneous link costs and profits. They show that Nash networks are either empty

or minimal strongly connected. Some examples of minimal strongly connected networks

are depicted in Figure 2.7.

Figure 2.7: Minimal strongly connected networks.

In this section we characterize Nash networks for games with heterogeneous link

costs and for games with owner-homogeneous link costs. Here, we will assume that

link costs and profits are strictly positive. This assumption, which is also made by

Bala and Goyal (2000a) and Galeotti (2006), is needed to obtain insightful results on

the architecture of Nash networks. In games with link costs and/or profits equal to

0, agents often have multiple payoff equivalent actions, which causes a large variety of

Nash network architectures. In fact, for games with all link costs and profits equal to

0, a Nash network can have any architecture.

For games with strictly positive link costs, we show in the following lemma that all

Nash networks are minimal networks.

Lemma 2.3.1. If π is a joint B&G-1 function with strictly positive link costs, then

each Nash network is a minimal network.

Proof. Suppose to the contrary that a Nash network g exists for a game with strictly

positive link costs, that is not a minimal network. Then a link (j, i) exists in g and an
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additional directed path from j to i. Since link costs are strictly positive, the deletion

of link (j, i) is a strictly improving action contradicting that g is a Nash network. �

For games with heterogeneous link costs, we know by Example 2.2.9 that Nash

networks do not always exist. The Nash networks that do exist for these games are

fully characterized as minimal networks:

Theorem 2.3.2. If π is a joint B&G-1 function with heterogeneous and strictly pos-

itive link costs, then each Nash network is a minimal network. Further, any minimal

network is a Nash network for some joint B&G-1 function with heterogeneous and

strictly positive link costs.

Proof. The first part directly follows from Lemma 2.3.1.

Now, let g be a minimal network. Let the profits be vij = 1 for all i, j ∈ N . For

each link (j, i) in g, let cij = 1. For each (j, i) 6∈ g, let cij = n.

First we can conclude that any best response of an agent i, is a subset of Nd
i (g),

since each link (j, i) where j 6∈ Nd
i (g) has cost cij = n, and is therefore not profitable

in any situation.

Let (j, i) be a link in g. Since g is minimal, i uniquely observes j via (j, i). Since

cij = vij = 1, it follows that j can be included in any best response. Therefore we

conclude that Nd
i (g) is a best response of i. Hence, g is a Nash network. �

Observe that this result holds for both homogeneous and heterogeneous profits.

When link costs are owner-homogeneous, i.e. cij = ci for all i, j, then not all minimal

networks are supported as Nash networks. Consider for instance the network with two

outgoing links: g = {(i, j), (i, k)}. This network cannot be Nash for any game with

owner-homogeneous link costs, because since cji = cjk, and vjk > 0, agent j can

improve by replacing link (i, j) by (k, j).

To characterize the set of Nash networks for owner-homogeneous link costs, we

introduce the following network architecture. Let network g be called semi-proper if

for all (i, j), (i, k) ∈ g, with j 6= k, link (i, j) is contained in a cycle, and link (i, k) is

contained in a cycle.

Observe that all strongly connected networks are semi-proper, including the net-

works depicted in Figure 2.7. In the following theorem we show that the class of

minimal semi-proper networks fully characterizes the set of Nash networks for games

with owner-homogeneous links costs. An illustrative example of a minimal semi-proper

network is depicted in Figure 2.8.

Theorem 2.3.3. If π is a joint B&G-1 function with owner-homogeneous and strictly

positive link costs, and heterogeneous and strictly positive profits, then each Nash net-

work is minimal and semi-proper. Further, any minimal semi-proper network is a Nash

network for some joint B&G-1 function with owner-homogeneous and strictly positive

link costs, and heterogeneous and strictly positive profits.
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Figure 2.8: A minimal semi-proper network.

Proof. Let g be a Nash network for a game with owner-homogeneous and strictly

positive link costs, and strictly positive profits. By Lemma 2.3.1 it follows that g is

minimal. Now suppose that g is not semi-proper. Hence two links exist in g, say (i, j)

and (i, k), such that at least one of them, say (i, j) is not contained in a cycle. It

follows that j 6∈ Nk(g). Since link costs are owner-homogeneous and profits are strictly

positive, the replacement of (i, k) by (j, k) is strictly improving, implying that g is a

not Nash network. Hence we conclude each Nash network is minimal and semi-proper.

Now, let g be a minimal semi-proper network. We prove that a joint B&G-1 function

exists for which g is a Nash network.

First, we require the following definitions. For each (j, i) ∈ g, let Sij be the set of

agents that i observes exclusively via (j, i), i.e.

Sij = Ni(g−ij) \Ni(g − (j, i)).

Observe that j ∈ Sij , for otherwise g is not a minimal network. Further, let

Si =
⋃

j∈Nd
i (g)

Sij .

Consider the following B&G-1 functions. Let link costs be homogeneous: let c = 1.

For each i and j, let vij = 1 when j ∈ Si and let vij = 1
n when j 6∈ Si.

We show that for each agent i ∈ N , the agent set Nd
i (g) is a best response. Let B

be a best response of agent i, and let the obtained network be g′.
Consider agent j ∈ Nd

i (g). Suppose that j 6∈ B. Then we may assume that Ni(g
′) ⊇

Sij , for otherwise the addition of (k, i), with k ∈ Sij \Ni(g
′), is improving since vik = c.

Let j′ be an agent in B by whom i observes an agent k ∈ Sij in g′. Since a directed

path exists from k to j′ in g and a directed path from k to j in g, by semi-properness,

a directed path exists from j′ to k in g and a directed path from j to k in g. Hence, a

directed path exists from j′ to j in g and vice versa. Since link costs are homogeneous,
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the action B \ {j′} ∪ {j} is as good as B. Hence, without loss of generality, we may

assume that Nd
i (g) ⊆ B.

Suppose that T = B \Nd
i (g) is non-empty. By the fact that link costs are strictly

positive, it follows that T only contains newly observed agents i.e. T ∩ Ni(g) = ∅.
Hence, T ∩ Si = ∅, and therefore it follows that for each j ∈ T , vij = 1

n . Since

c = 1 >
∑

j∈T vij , we conclude that T = ∅, and thus Nd
i (g) is a best response of i in

network g. �

For games with owner-homogeneous link costs and homogeneous profits, some min-

imal semi-proper networks are never Nash. Consider for instance the network depicted

in Figure 2.8. Let i be the agent who is directly linked with the two leaf agents (i.e.

agents without own links) depicted at the bottom. He gains from observing the two

leafs. If link costs are owner-homogeneous and profits are homogeneous and strictly

positive, then it is also worthwhile to observe the strongly connected subnetwork.

Therefore, this network cannot be Nash for games with owner-homogeneous link costs

and homogeneous profits.

It can easily be verified that for those games, the architecture of Nash networks

is characterized as any minimal semi-proper network g for which the following holds:

network g′ = g − {(j, i) : Nd
j (g) = ∅} contains at most one non-empty component,

and furthermore, any such component is minimal and strongly connected. Examples of

these specific minimal semi-proper networks are depicted in Figure 2.9. The network

depicted in Figure 2.9(c), is only Nash if ci = v with i being the agent depicted at the

bottom left, because if ci > v, then i can better remove his link with the upper agent,

and if ci < v, then i can better link up with the isolated agent.

(a) (b) (c)

Figure 2.9: Special cases of minimal semi-proper networks.

2.4 Strict Nash networks

Recall that network g is a strict Nash network if Nd
i (g) is a unique best response for

each agent i. In this section, we study the existence and architecture of strict Nash

networks.
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Bala and Goyal (2000a) prove the existence of strict Nash networks for games with

homogeneous link costs and profits. Necessarily, link costs have to be strictly posi-

tive for this result, due to the following proposition. Here, we show that strict Nash

networks do not exist for any game where all links are for free.

Proposition 2.4.1. Let N = {1, . . . , n} be the set of agents with n ≥ 2. Let all links

be for free, i.e. c = 0. Then strict Nash networks do not exist.

Proof. Suppose to the contrary that a strict Nash network exists, say g. The current

action in g for each agent i has to be N \ {i}, because otherwise all supersets of his

action are equally good, contradicting that g is a strict Nash network. Hence, we

conclude that g is the complete network. But then, each agent i can deviate by playing

a non-empty action, which gives him an equal payoff. We conclude that strict Nash

networks do not exist. �

For games with owner-homogeneous link costs, the following example shows that

strict Nash networks may not exist, even if link costs are strictly positive.

Example 2.4.2. Let again N = {1, . . . , n} be the set of agents. Let π be a joint

B&G-1 function where c1 = n − 1, and ci = 1 for all i 6= 1. Further, vij = 1 for all

i, j ∈ N .

For each agent i ∈ N \ {1} we have ci = 1 <
∑

j∈N,j 6=i vij = n − 1. According to

Bala and Goyal (2000a)’s Proposition 3.2, all agents in N \ {1} form a cycle in each

strict Nash network.

Either agent 1 is also contained in this cycle or not. Suppose he is. Then by his one

link he receives n − 1 profits, and the link itself costs n − 1. Hence, he is indifferent

about maintaining this link. Thus, a cycle network cannot be strict Nash.

Now suppose that agent 1 is not contained in the cycle on N \ {1}. Then, by

forming a link with one of the other agents, agent 1 receives n − 1 profits, and pays

n− 1. Therefore, he is indifferent about forming such a link. Hence, again the network

cannot be strict Nash. Therefore, we conclude that strict Nash networks do not exist

for this game. ♦

The architecture of strict Nash networks is characterized by Bala and Goyal (2000a)

and Galeotti (2006). Their results are the following:

∗ For games with heterogeneous link costs, strict Nash networks are characterized

by Galeotti (2006) as minimal networks.

∗ For games with owner-homogeneous link costs and heterogeneous profits, Galeotti

(2006) characterizes strict Nash networks as proper networks, i.e. networks where

each agent has at most one outgoing link. An illustrative example of a proper

network is depicted in Figure 2.10. Notice that each proper network is minimal.

This characterization is confirmed by Example 2.2.4. The network depicted in

Figure 2.2 is not strict Nash, because agent j can deviate by forming (k, j) instead
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of (i, j) which gives him the same payoff due to link cost owner-homogeneity.

Notice that in the newly obtained network, agent i can deviate by removing link

(k, i) which gives him a higher payoff. The cycle network that we now obtain is

strict Nash.

Figure 2.10: A proper network.

∗ For games with owner-homogeneous link costs and homogeneous profits, strict

Nash networks are characterized by Galeotti (2006) as specific proper networks,

namely: the empty network, a cycle network, a center-sponsored star (Fig-

ure 2.11(a)), a cycle with singletons (Figure 2.11(b)), and a cycle with local

center-sponsored stars (Figure 2.11(c)).

(a) (b) (c)

Figure 2.11: Special cases of proper networks.

∗ Bala and Goyal (2000a) show that a strict Nash network is either the empty

network or a cycle network for games with homogeneous and strictly positive

link costs and profits.

Although the characterizations by Bala and Goyal (2000a) and by Galeotti (2006)

apply to games with strictly positive link costs and profits, it can be verified as follows

that they also apply to games with non-negative link costs and profits.
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∗ Consider for instance the case where link costs are owner-homogeneous and non-

negative, and where profits are heterogeneous and non-negative. Suppose that

there exists a non-proper strict Nash network g. Then, an agent i exists who

has at least two outgoing links, say (i, j) and (i, k). Since g is strict Nash, agent

j strictly prefers (i, j) over (k, j). Since link costs are owner-homogeneous, this

implies that vjk is negative; a contradiction. We conclude that each strict Nash

network is proper. Further, each proper network is strict Nash for some of those

B&G-1 functions, since each game with strictly positive link costs and profits is

also a game with non-negative link costs and profits.

∗ Now consider the case with heterogeneous and non-negative link costs and profits.

Suppose that there exists a non-minimal strict Nash network g. Thus, a link (j, i)

exists in g and also a directed path from j to i. This implies that cij is negative;

a contradiction. We conclude that each strict Nash network is minimal. Like the

previous case, the second part is easily established.

Observe that these generalizations are not empty, since strict Nash networks exist when

some profits are 0. For instance the empty network is strict Nash when all profits are

0 and all link costs are strictly positive.

2.5 Negative profits

In this section we examine games where we drop the assumption that profits should be

non-negative. This extension can be very realistic in applications of network formation.

Imagine there is a person in your friendship network you do not like. Of course, a

friendship with this person is not obligatory. However, some of your friends might

have a friendship with this person. Therefore, is it not always good to have as many

friends as possible. Another application of network formation where profits may be

negative, is the World Wide Web, where you want to avoid certain websites.

In this section we examine games where some profit values are negative. We show

by means of a counterexample that the existence of Nash networks is not guaranteed.

Further, we provide a full characterization of (strict) Nash networks.

Recall from Lemma 2.2.1 that for games with non-negative profits and costs, any

cycle network is Nash whenever the cost of each link is less or equal than the total

profit. The following example illustrates that for games with possibly negative profits,

cycle networks may not be Nash networks, even if each agent receives a positive payoff.

Example 2.5.1. Let N = {1, 2, . . . , n}. Let π be a joint B&G-1 function, where the

cost of each link is 1. Let agent 1 be the “dictator”. Each other agent i wants to

observe him at any cost. However, agent i preferably does not want to observe other

agents. Thus for each agent i 6= 1, let vi1 = M , with M being a very large number, and

let vij = −1 for each j 6= 1. The dictator himself wants to observe any other agent, i.e.

let v1j = 2 for all j.
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(a) (b) (c)

Figure 2.12: Networks of Example 2.5.1.

Consider the cycle network depicted in Figure 2.12(a). This network is not Nash,

because agent j (and any other agent except 1 and the agent who observes 1 directly)

has an improving action by replacing his link (k, j) with (1, j). See Figure 2.12(b). It

can easily be verified that the network depicted in Figure 2.12(c) is the unique Nash

network for this game.

Observe that the network in Figure 2.12(a) is at least as good for each agent as the

network in Figure 2.12(c), while the former is not Nash and the latter is. ♦

As for the existence of Nash networks, we obtain the following counterexample. For

this example, where three agents are involved, Nash networks do not exist.

Example 2.5.2. Let N = {1, 2, 3}. Let π be a joint B&G-1 function, where the cost

for each link is 1. Further, let

v12 = 2, v13 = −4,

v23 = 2, v21 = −4,

v31 = 2, v32 = −4.

1

3 2

1

3 2

(a) (b)

Figure 2.13: Two networks with only counterclockwise links.

Let the agents 1, 2, and 3 be located as in Figure 2.13. First observe that any Nash

network only consists of counterclockwise links (thus (2, 1), (1, 3), and (3, 2)).

In a network that contains at most one counterclockwise link, an agent exists who

can perform a strictly improving addition. For instance, consider the network depicted
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in 2.13(a). Agent 2 can strictly improve by adding (3, 2), obtaining the network in

Figure 2.13(b).

Hence any Nash network contains 2 or 3 counterclockwise links. However, in a

network with at least 2 counterclockwise links, one of them is not profitable. Consider

e.g. the network depicted in Figure 2.13(b). Then π1(g) = −3, and hence agent 1

can delete (2, 1), which is a strictly improving deletion. Hence we conclude that Nash

networks do not exist in this example. ♦

In the following theorem we fully characterize Nash networks as minimal networks.

Theorem 2.5.3. If π is a joint B&G-1 function with (owner-)homogeneous and strictly

positive costs, and heterogeneous (and possibly negative) profits, then each Nash net-

work is a minimal network. Further, any minimal network is a Nash network for

some joint B&G-1 function with (owner-)homogeneous and strictly positive costs, and

heterogeneous (and possibly negative) profits.

Proof. The first part directly follows from Lemma 2.3.1.

Now, let g be a minimal network. Let the link costs be c = 1. Further, let vij = 1

for each agent j ∈ Ni(g), and vij = −n for each agent j 6∈ Ni(g).

First we can conclude that any best response of agent i is a subset of Ni(g), since

each link (j, i) where j 6∈ Ni(g) yields profits vij = −n, and is therefore not profitable

in any situation. Let S ⊆ Ni(g) be a best response of i in network g.

Consider agent j ∈ Nd
i (g). Since vij = 1, we may assume that i observes j after

playing best response S. Hence, either j is contained in S, or an agent k is contained in

S such that a directed path exists from j to k in g−i. We have k ∈ Ni(g), for otherwise

vik = −n. Hence a directed path from k to i exists in g. This path visits j, because

otherwise g is not minimal (due to link (j, i)). Hence we conclude that j and k are

contained in a cycle that does not contain i. Since c = 1, i is indifferent about whether

he chooses j or k. Hence we may assume that j is contained in S. Therefore, it follows

that Nd
i (g) ⊆ S.

Now consider agent j ∈ Ni(g) \ Nd
i (g). Since i already observes j (indirectly) by

playing Nd
i (g), and since link costs are strictly positive, it follows that j 6∈ S.

We conclude that Nd
i (g) is a best response of i. Therefore, g is a Nash network. �

Observe that negative profits have a similar effect on the architecture of Nash net-

works as heterogeneous link costs (see Theorem 2.3.2). Consider the non-proper net-

work g = {(i, j), (i, k)} that is preferred over the proper network g′ = {(k, j), (i, k)} by

j whenever cji < cjk − vjk. This implies that either

∗ vjk ≥ 0 and cji < cjk, or

∗ vjk < 0.

Thus, non-proper networks are supported as Nash networks only when link costs are

heterogeneous, or when some profits are negative. We proved that for both cases Nash

networks are fully characterized as minimal networks.
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As for strict Nash networks, not all minimal networks are strict Nash for some games

with (owner-)homogeneous link costs. Consider for instance a cycle C and an agent i

outside C who observes C. Then, agent i has multiple payoff equivalent actions: he can

replace his link to any agent in C. To deal with these situations, we need the following

definition: let a network be called cycle-proper if each agent on a cycle has exactly

one outgoing link. In the following result, we fully characterize strict Nash networks

as minimal cycle-proper networks.

Theorem 2.5.4. If π is a joint B&G-1 function with (owner-)homogeneous and non-

negative costs, and heterogeneous (and possibly negative) profits, then each strict Nash

network is minimal and cycle-proper. Further, any minimal cycle-proper network is

a strict Nash network for some joint B&G-1 function with (owner-)homogeneous and

non-negative costs, and heterogeneous (and possibly negative) profits.

Proof. Let g be a strict Nash network for a game with (owner-)heterogeneous link costs.

Suppose to the contrary that g is not a minimal network. Then a link (j, i) exists in

g and an additional directed path from j to i. Since link costs are non-negative, the

deletion of link (j, i) is an action of agent i that does not decrease his payoff. This

contradicts that g is a strict Nash network.

Now suppose to the contrary that g is not cycle-proper. Then a cycle exists where

an agent on it has at least two outgoing links, a link on this cycle (i, j) and another

link (i, k). Then, the action Nd
k (g) \ {i} ∪ {j} yields the same payoff for agent k as his

current action Nd
k (g). This implies that g is not strict Nash; a contradiction.

Now, let g be a minimal cycle-proper network. Let the link costs be c = 1. Further,

let vij = 2 for each agent j ∈ Ni(g), and vij = −n for each agent j 6∈ Ni(g).

First we can conclude that any best response of agent i is a subset of Ni(g), since

each link (j, i) where j 6∈ Ni(g) yields profits vij = −n, and is therefore not profitable

in any situation. Let S ⊆ Ni(g) be a best response of i in network g.

Consider agent j ∈ Nd
i (g). Since g is minimal, i uniquely observes j via (j, i). Since

vij > c, it follows that agent i observes j after playing S. Hence, either j ∈ S or an

agent k 6= j is contained in S such that a directed path exists from j to k in g−i. In

the latter case, we may assume that k ∈ Ni(g), because otherwise vik = −n. Thus,

a directed path from k to i exists in g. This path visits j, for otherwise g is not a

minimal network (due to link (j, i)). Hence, j and k are contained in a cycle that does

not contain i. Thus, agent j has two outgoing links: one on the cycle and one to agent

i. This contradicts the fact that g is cycle-proper. Hence we conclude that such an

agent k does not exist. We conclude that j is contained in S. Therefore, we have

Nd
i (g) ⊆ S.

Now consider agent j ∈ Ni(g) \ Nd
i (g). Since i already observes j (indirectly) by

playing Nd
i (g), and since c = 1, it follows that j 6∈ S.

Therefore we conclude that Nd
i (g) is the unique best response of i. Hence, g is a

strict Nash network. �
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2.6 Overview of the results

In this section we provide an overview of the results with respect to the architecture

and existence of Nash networks in the one-way flow model. In Table 2.1, these results

are summarized. Here, all link costs and profits are non-negative, unless mentioned

otherwise.

Payoff Nash networks Strict-Nash networks

Costs Profits Existence Architecture1 Existence Architecture

Homogeneous Homogeneous Yes Empty network,

minimal strongly

connected network

Yes2 Empty network, cycle

(BG2000a) (BG2000a) (BG2000a) (BG2000a)

Owner-

homogeneous

Homogeneous Yes Special case of

minimal semi-proper

network

No Special case of proper

network

(Thms 2.2.2

and 2.2.8)

(Fig. 2.9) (Ex. 2.4.2) (Gal2006)

Owner-

homogeneous

Heterogeneous Yes Minimal semi-proper

network

No Proper network

(Thms 2.2.2

and 2.2.8)

(Thm. 2.3.3) (Ex. 2.4.2) (Gal2006)

(Owner-)

homogeneous

Possibly

negative

No Minimal network No Minimal cycle-proper

network

(Ex. 2.5.2) (Thm. 2.5.3) (Ex. 2.4.2) (Thm. 2.5.4)

Heterogeneous Homogeneous No Minimal network No Minimal network

(Ex. 2.2.9) (Thm. 2.3.2) (Ex. 2.4.2) (Gal2006)

Heterogeneous Heterogeneous No Minimal network No Minimal network

(Ex. 2.2.9) (Thm. 2.3.2) (Ex. 2.4.2) (Gal2006)

Table 2.1: Overview of the results.

1For the architecture of Nash networks, we assume that link costs and profits are unequal to 0, for

otherwise a Nash network can have any architecture.
2Strict Nash networks only exist when c > 0.



Chapter 3

Best response problem

In the model of network formation that we studied in the previous chapter, an action

of agent i is defined as a set of agents S ⊆ N \ {i} to whom he forms the links

{(j, i) : j ∈ S}. Given a specific network, where the actions of all other agents are

fixed, each action yields a certain payoff. An action is called a best response if it yields

a maximal payoff for him.

The question that we would like to answer in this chapter is how difficult it is to

find such a best response. We will focus on payoff functions of the one-way flow model.

Since an action is defined as S ⊆ N \{i}, the number of possible actions is exponential

in the number of agents: 2n−1, where n = |N |. It turns out that the problem of finding

a best response is indeed very difficult to solve, even if link costs are homogeneous.

Formally, we prove that this problem is NP-hard, by reduction from the Minimum Set

Cover problem.

Further, we study algorithms for finding a best response. First we introduce a

brute-force algorithm that checks each of the 2n−1 actions, and selects a best one.

Then we propose an algorithm that reduces this number by acquiring knowledge from

the network architecture and the payoff function. Although worst case networks exist

for which this algorithm performs as bad as brute-force, on the average, the number

of actions that it checks is strongly reduced. For this purpose, we run experiments for

various values of network density and various numbers of agents.

Finally, we relate the problem of finding a best response with the two-way flow

model. The only difference with the one-way flow model, is that profits flow in both

directions of the links. We propose an algorithm that finds a best response in polyno-

mial time.

Fabrikant et al. (2003) show that finding a best response in the two-way flow model

with decay (here the profits decrease linearly with the distances of the connection

paths) is NP-hard. Baron et al. (2008) also study the computational complexity of

finding best responses in network formation games, but they consider a different class

of payoff functions: agent i receives a profit from agent j if both link (j, i) and (i, j)

35
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exist, and the costs for agent i are quadratic in the number of links he formed.

This chapter is organized as follows. First we introduce the Best Response Problem

(BRP). Then, in Section 3.2, we prove that BRP is NP-hard. In Section 3.3 we propose

algorithm arrac that solves BRP. We study the time- and space complexity of arrac

and compare this to a brute-force algorithm in Section 3.4. Then, we study the average

case performance of arrac by experiments in Section 3.5. Finally, in Section 3.6 we

study the best response problem for the two-way flow model. We provide a polynomial-

time algorithm for this problem.

This chapter is partly based on Derks et al. (2008b).

3.1 Problem formulation

In this chapter, we will use the notations that are introduced in Section 2.1.

Recall that we define an action of agent i to network g as a set of agents, denoted

as S ⊆ N \ {i}. The obtained network when i plays action S in g is denoted by

g′ = g−i +
{

(j, i) : j ∈ S
}
, (3.1)

and his payoff by the B&G-1 function

πi(g
′) =

∑
j∈Ni(g′)

vij −
∑
j∈S

cij . (3.2)

We identify a Best Response Problem (BRP for short) by a tuple (N, i, c, v, g), where

N is a set of agents, i ∈ N is an agent who searches for a best response, c and v are

the costs and profits that specify a B&G-1 function w.r.t. agent i, and g is a network

on the agents in N .

When agent i is searching for a best response in network g, his current incoming

and outgoing links in g do not have any influence. The latter can be seen as follows.

Suppose that πi(g
′) 6= πi(g

′− (i, j)) for any obtained network g′ and any outgoing link

(i, j) ∈ g′. Since i does not have to pay for this link, he must receive certain profits

that flow along this link. However, since these profits flow from him to j, he already

receives these profits in g′ without using link (i, j); a contradiction. Therefore, we may

assume that agent i does not have incoming or outgoing links in network g, which is

the network in which agent i searches for a best response.

3.2 Complexity class

In this section we study the complexity class of BRP. For this purpose, we require the

following definitions from computational complexity theory.

First of all, a problem is called a decision problem if the solution is “yes” or “no”.

An optimization problem is the problem of finding a best solution from all feasible

solutions. Observe that BRP is an optimization problem.
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A decision problem is assigned to the NP (nondeterministic polynomial time) class

if the “yes” answer is verifiable in polynomial time. A decision problem is assigned

to the P (polynomial time) class if there exists at least one algorithm to solve that

problem in polynomial time, that is, the number of steps of the algorithm is bounded

by a polynomial in the length of the input. Clearly, it follows that P ⊆ NP. However,

it is not known whether P = NP. It is widely believed that this is not the case. A prob-

lem (optimization or decision problem) is NP-hard if a polynomial-time algorithm for

solving it implies that for any problem in NP, there exists a polynomial-time algorithm

for solving it.

In the next theorem, we prove that BRP is NP-hard.

Theorem 3.2.1. BRP is NP-hard, even when the link costs are homogeneous (cij = c

for all i, j ∈ N).

Proof. We prove this by reduction from the Minimum Set Cover problem (MSC), which

is a well-known NP-hard problem (see Karp (1972)). In other words, we prove that any

instance of MSC can be transformed (in polynomial time) into an instance of BRP.

Let K = {K1,K2, . . . ,Kk} be a collection of k non-empty subsets of a finite set

X = {1, 2, . . . , x} such that X =
⋃k

j=1Kj . MSC is the problem of finding a subset

K′ ⊆ K of minimum cardinality such that every element in X belongs to at least one

member of K′. Notice that such a set cover K′ exists.

Next we show how to reduce MSC to BRP. Let (N, y, c, v, g) be a BRP instance,

where N = {1, . . . , x,K1,K2, . . . ,Kk, w, y}, where the link costs are homogeneous, i.e.

c = 1, where the profits of agent y have the following values:

vyi =


1 if i ∈ X;

1− 1
2k if i ∈ K;

0 if i ∈ {w, y},

and where g ∈ G is a network that is built up as follows: for each agent i ∈ X we

create a link (i, w) and for each agent i ∈ Kj we create a link (i,Kj). In Figure 3.1 an

example of such a network is shown.

We show that finding a best response S for the BRP instance (N, y, c, v, g) solves

the problem of finding a minimum subset of K that covers X.

Observe that we may restrict to S ⊆ {K1, . . . ,Kk, w}, because every i ∈ X is an

element of some Kj , and therefore agent y would receive at least as much payoff from

replacing i by Kj . Further, if w ∈ S, then S = {w}, since the cost of any additional

link exceeds the extra profits. Hence, either S = {w} or S ⊆ K. Observe that the

action {w} yields the payoff x− 1 for agent y.

Let K′ ⊆ K and let T be an action defined as T = K′. Then T yields the following

payoff for agent y:

πy
(
g−y + {(i, y) : i ∈ T}

)
= k′(1− 1

2k
) + t− k′ = − k

′

2k
+ t



38 CHAPTER 3. BEST RESPONSE PROBLEM

1

K1 K2 K3 K4

w

y

2 3 4 5

Figure 3.1: Network g.

where k′ = |K′| and t is the number of members of X that are covered by K′.
If K′ does not cover X, then t ≤ x− 1, and hence − k′

2k + t ≤ − k′

2k + x− 1 < x− 1.

In other words, the action T yields a payoff which is strictly less than the payoff x− 1

which corresponds to the action {w}. We conclude that if K′ does not cover X, then

the corresponding action T is not a best response.

If K′ ⊆ K covers X, then t = x and hence − k′

2k + t = − k′

2k + x > x − 1. Thus, the

action T yields a strictly higher payoff than the payoff x− 1 which corresponds to the

action {w}. So every action that is a set cover yields a strictly higher payoff than the

payoff from the action {w}. Of all actions that are set covers, the ones with the lowest

cardinality are best responses, because the payoff − k′

2k + x is maximal if k′ is minimal.

We therefore conclude that each best response of agent y with respect to network g is

defined as S = K′ where K′ is a minimum set cover.

Since the transformation from any MSC instance to a BRP instance can be done in

polynomial time and since MSC is NP-hard (see Karp (1972)), it follows that BRP is

also NP-hard. �

Observe that BRP can be interpreted as the problem of maximizing a set function.

This can be seen by the fact that agent i chooses a subset from N \ {i}, given a fixed

network g−i. Let f : 2N\{i} → R be a payoff set function defined as

f(S) = πi
(
g−i + {(j, i) : j ∈ S}

)
(3.3)

for each S ⊆ N \ {i}, where network g−i and agent i are fixed.

A set function f is called submodular if

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) for all S, T ⊆ N \ {i},

supermodular if the left-hand side is less than or equal to the right-hand side, and

modular if they are equal.
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For maximizing supermodular set functions in general, which is equivalent to min-

imizing submodular set functions, Grötschel et al. (1981) proposed a polynomial-time

algorithm. Alternative algorithms that are more efficient in practice are proposed

independently by Schrijver (2000) and Iwata et al. (2001).

Garey and Johnson (1979) show that the problem of maximizing submodular set

functions is NP-hard, due to the fact that it is a general case of the max-cut prob-

lem. The problem of maximizing submodular set functions has also been studied by

Nemhauser et al. (1978), Lovasz (1983), and Lee et al. (1996), among others.

In the following theorem, we show that the payoff set function (3.3) is submodular.

Theorem 3.2.2. Let πi be a B&G-1 function for agent i ∈ N . Then the corresponding

payoff set function f , as defined by (3.3), is submodular.

Proof. By definition of B&G-1 functions in (3.2), we may split f into a profit and a

cost part. Therefore we rewrite the profit and the cost function as set functions. Let

v(S) =
∑
j∈S

vij (3.4)

be the profit set function and let

c(S) =
∑
j∈S

cij (3.5)

be the cost set function. Further, we define

N(S) =
{
j : j ∈ Ni

(
g−i + {(j, i) : j ∈ S}

)}
, (3.6)

that is, the set of observed agents by playing action S. Now, set function f can be

rewritten as

f(S) = v
(
N(S)

)
− c(S). (3.7)

Obviously, the cost set function c, defined by (3.5), is modular. To check whether v

is modular, submodular, or supermodular with respect to S we have to check the sign

of the following expression

v
(
N(S)

)
+ v
(
N(T )

)
− v
(
N(S ∪ T )

)
− v
(
N(S ∩ T )

)
. (3.8)

By (3.4), v is modular with respect to N(S), i.e.

v
(
N(S)

)
+ v
(
N(T )

)
= v
(
N(S) ∪N(T )

)
+ v
(
N(S) ∩N(T )

)
. (3.9)

By definition (3.6), we conclude that N(S) ∪N(T ) = N(S ∪ T ). Therefore, equation

(3.9) can be rewritten as

v
(
N(S)

)
+ v
(
N(T )

)
= v
(
N(S ∪ T )

)
+ v
(
N(S) ∩N(T )

)
. (3.10)
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Hence, expression (3.8) can be rewritten as

v
(
N(S) ∩N(T )

)
− v
(
N(S ∩ T )

)
. (3.11)

Since N(S ∩ T ) ⊆ N(S), and N(S ∩ T ) ⊆ N(T ), it follows that

N(S ∩ T ) ⊆ N(S) ∩N(T ).

Hence, the sign of expression (3.11) is non-negative. Thus we conclude that profit set

function v is submodular. Notice that for disjoint S and T the set N(S)∩N(T ) may be

non-empty, while the set N(S ∩ T ) is empty. In that case, the sign of (3.11) is strictly

positive. Therefore, we cannot say that v is not modular in general.

Since c is modular, and v is submodular, the payoff set function f is submodular.

�

Thus, BRP is a special case of maximizing a submodular set function. By Theo-

rem 3.2.1 we know that even for this case, maximizing a submodular set function is

NP-hard. This implies that we have independently proved the result by Garey and

Johnson (1979) that maximizing submodular functions in general is NP-hard.

3.3 Algorithm ARRAC

In this section we study algorithms that solve BRP, i.e. that find a best response for any

instance of BRP. First we introduce the brute-force algorithm, that simply checks all

possible actions. Then we present the so-called arrac algorithm which enhances the

brute-force algorithm in several ways. After this section, we study the complexity

of arrac in comparison to brute-force, and examine its average case performance.

The brute-force algorithm is straightforward:

Algorithm 3.3.1. brute-force

Input Best response problem (N, i, c, v, g).

Output A best response B.

Step Loop through all 2n−1 actions, and find a best one.

End

Thus, brute-force checks 2n−1 possible actions, irrespective of the network.

For unknown payoff functions, brute-force is optimal. However, since we restrict

ourselves to B&G-1 functions (defined by (3.2)), we are able to acquire knowledge from

the network architecture. With this knowledge we are able to reduce the number of

actions that are candidates for being best responses (and therefore have to be checked).

We provide three reduction techniques, and then we propose algorithm arrac which

is based on them.
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We need the following definitions. First of all, let a set of agents S ⊆ N be called

connected in network g, if for any two agents i, j ∈ S, an undirected path exists between

i and j, and this does not hold for any superset S′ ⊃ S. Notice that an isolated agent

is also identified as a connected set. A set of agents S ⊆ N , where |S| ≥ 2, is called

a group in network g, if for any two agents i, j ∈ S, a directed path exists from i to j

and vice versa, and this does not hold for any superset S′ ⊃ S.

The three reduction techniques are the following.

Connected set approach. Our first reduction technique is founded on the obser-

vation that B&G-1 functions treat the connected sets in a network separately. More

specifically, a B&G-1 function w.r.t. the obtained network g′ can be rewritten as

πi(g
′) =

∑
connected set S in g

( ∑
j∈Ni(g′)∩S

vij −
∑

j∈Nd
i (g
′)∩S
cij

)
.

The first reduction technique is that per connected set S in g, a best response is

determined. The union of all these best responses form a best response to network

g. This connected set approach strongly reduces the number of actions that have to

be checked, especially in sparse networks. For a network that consists of 2 connected

sets of the same size, the number of checked actions is already reduced from 2n−1 to

2(2
n−1
2 ) = 2

n+1
2 =

√
2n+1.

Replacement of groups by representatives. The second technique is based on

the following observation. Whenever a group exists in g, a connection with one agent

in it is sufficient to receive all profits obtained by this group. Thus, for agent j in this

group for which cij is minimal, forming the link (j, i) is sufficient to obtain a maximal

payoff from this group. Let this agent j be called the representative of his group (in

case there are multiple of them, just pick one arbitrarily).

When agent i plays a best response to a network that contains groups, he only has

to consider its representatives. By this observation, the number of actions that agent

i has to check in order to find a best response is again reduced (at least, whenever

there are groups). How much it is reduced, depends on the network architecture. For

instance, when N \ {i} is a group, i has to check only 2 actions: to form a link with

its representative, or to form no links at all.

This brings us to the following reduction technique. A network g is transformed

into an acyclic network g′ as follows. Each group S is replaced by its representative

j: each link to (from) an agent in S is replaced by a link to (from) agent j. All other

group members are left out of consideration. The profit with respect to j is defined as

v′ij =
∑

k∈S vik, while the profits with respect to the other agents do not change. It

can easily be verified that a best response to g′ with modified profits v′ is also a best

response to g with the original profits v.
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Selection of rootagents. The third and last technique to obtain valuable informa-

tion from the network architecture is only applicable when the payoff function satisfies

the following property.

Property DE A payoff function πi satisfies DE (short for downstream efficiency)

if πi(g + (k, i)) ≤ πi(g + (j, i)) for any network g where links (j, i) and (k, i) are not

contained, and where a directed path from k to j exists.

This property came already into view in Section 2.2.1, (2.5). It is only satisfied by

B&G-1 functions with owner-homogeneous link costs. The intuition behind this, is the

following. Whenever a directed path exists from k to j, agent i receives at least as

much profits via link (j, i) as via link (k, i). Due to owner-homogeneous link costs, i.e.

cij = cik = ci, forming link (j, i) is at least as good as forming link (k, i).

Let an agent be called a rootagent if he does not have outgoing links. The third

reduction technique is that, given an acyclic network (i.e. without groups), only actions

are checked that only contain rootagents.

So far, we provided three techniques that can be used to reduce the number of

actions that have to be checked in order to find a best response. Observe that these

techniques only reduce the number of actions by looking at the architecture of the

network, and not at the specific costs and profits.

Now we describe an algorithm that incorporates these three reduction techniques.

This algorithm will be called arrac, which is an abbreviation for Actionspace Reduc-

tion to Rootagents in Acyclic Connected sets. We will describe this algorithm with the

help of an example. In the network depicted in Figure 3.2, agent i has to find a best

response.

i

1

2 3

4 5

6
8 9

10

7

Figure 3.2: Example of network g.

Algorithm 3.3.2. arrac

Input Best response problem (N, i, c, v, g).

Output A best response B.

Step 1 Find all groups in g. In Figure 3.2 there are two groups: {3, 4} and {8, 9, 10}.
For this step Tarjan’s algorithm (Tarjan (1972)) can be used.
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Step 2 Create a new best response problem (N ′, i, c, v′, g′) as follows.

Put the following agents in set N ′:

∗ each agent in N who is not a member of a group, and

∗ a representative s for each group S, such that cis = mink∈S cik.

For each j ∈ N ′, define v′ij as:

v′ij =

{ ∑
k∈S vik if j represents group S;

vij otherwise.

Construct network g′ by replacing each begin- or endpoint in g, that is adjacent

to a member of a group, to its representative. Consider for instance the network

in Figure 3.3. Here, the representatives are labeled s1 and s2. Notice that g′ is

acyclic.

i

1

2
s1

5

6

s2

7

Figure 3.3: Example of network g′.

Step 3 Find all connected sets in g′ (except {i}) by using a breadth-first search, and

call them S1, S2, . . .. In the example there are three of them: {1, 2, s1}, {5, 6, 7},
and {s2}.

Step 4 Whenever link costs are heterogeneous, let Rk = Sk for each connected set

Sk in g′. Otherwise, find all rootagents in g who are member of Sk, and call

this set of rootagents Rk. In the example, we have R1 = {2}, R2 = {6, 7}, and

R3 = {s2}.

Step 5 Per connected set Sk in g′, calculate the payoff for each subset of Rk. Thus,

2|Rk| actions are considered per connected set Sk. In our example, there are 2, 4,

and 2 of these actions for the first, second, and third connected set respectively.

Let Bk ⊆ Rk be an action with the highest payoff. Let B =
⋃

k Bk be the union

of these actions over all connected sets. Then, B is a best response to the BRP

instance (N ′, i, c, v′, g′), and moreover, it is a best response to the original BRP

instance (N, i, c, v, g).

End
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The correctness of arrac is easily established by the description of the three re-

duction techniques prior to this algorithm. Recall that finding rootagents in step 4

requires the payoff function to satisfy DE, which is the case whenever link costs are

owner-homogeneous.

3.4 Time and space complexity of ARRAC

In this section we will study the complexity of arrac. We consider two types of

complexity: time and space complexity.

For measuring time and space complexity we will use the ‘big O’ notation, which

is written by the symbol O. We say that f(x) = O
(
g(x)

)
if there are fixed positive

constants c and k such that 0 ≤ f(x) ≤ cg(x) for all x ≥ k. When we write equality

of two O functions, i.e. O
(
f(x)

)
= O

(
g(x)

)
, then f(x) = O

(
g(x)

)
holds, while g(x) =

O
(
f(x)

)
does not necessarily hold. For example, O(x) = O(x2) whereas O(x2) 6= O(x).

The time complexity of arrac is the number of arithmetic operations that it takes

to solve a BRP instance using arrac, as a function of the number of agents and/or

the number of links. Recall that the number of agents in N is n. Further, let e be the

number of links in g.

The space complexity of arrac is the amount of memory required to solve a BRP

instance using arrac. We assume that each data value that arrac uses can be

expressed with a 16-bit integer, i.e. a natural number between 0 and 65535. Therefore

we define the space complexity of arrac by the number of stored integers as a function

of the number of agents. Observe that the ratio between the amount of storage required

to store a 16-bit integer and that of a binary value is 16: a fixed constant. Therefore,

the space complexities of storing an integer and a binary value are equal.

We would like to remark that there are four common ways to represent a network

by data:

Adjacency matrix: an n by n binary matrix, where an element at row i and column

j equals 1 if and only if (j, i) ∈ g.

Incidence matrix: an n by e matrix, where an element at row i and column ` equals

+1 if link ` starts at node i,

−1 if link ` ends at node i, and

0 otherwise.

Adjacency list: a vertical list of n agents, where for each agent i, the agents in Nd
i (g)

are listed horizontally.

Edge list: a list of links.

Notice that the edge list representation corresponds to our mathematical represen-

tation of a network. For choosing the most appropriate data representation, we have to
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examine the space complexities of them, and the time complexities of data operations

that BRP algorithms, in particular arrac, will perform.

We choose the adjacency matrix representation because of the following reasons.

The set of agents (i.e. nodes) in a BRP is fixed. Therefore, each elementary network

operation that we need, can be run in O(1) time. Furthermore, it is clear that the

space needed to store an adjacency matrix (n2 bits) will not be a problem.

One part that appears in both algorithms is that different actions are compared to

each other in order to find a best one. This means that for each action, the correspond-

ing payoff has to be calculated. In complexity theory, a function evaluation is often

considered as one arithmetic step. However, since our payoff function is derived directly

from the network and the costs and profits, we take the time and space complexities

of calculating a payoff into account. The payoff can be calculated with a breadth-first

or depth-first search (in order to determine the set Ni(g
′), where g′ is the obtained

network).

In the next theorem, we provide the space complexity of arrac.

Theorem 3.4.1. Let (N, i, c, v, g) be a best response problem. Then the space com-

plexity of arrac is O(n2), where n is the number of agents in N .

Proof. For storing BRP instances (arrac stores two of them), O(n2) is needed. Fur-

ther, space is needed for several depth- and breadth-first searches (in steps 1, 3, and

5). It is known that the space complexities for these searches are O(n) and O(n + e)

respectively. Therefore, the space complexity of arrac is O(n2). �

Clearly, this space complexity will not be a problem in practice. In the following

results we provide the time complexities of brute-force and arrac.

Theorem 3.4.2. The time complexity of brute-force is O
(
(n + e)2n

)
, where n is

the number of agents in N , and e is the number of links in g.

Proof. In brute-force, the payoff is calculated for each of the possible 2n−1 actions.

Each of these calculations requires a breadth-first search, which has time complexity

O(n+ e). Hence, the time complexity of brute-force is O
(
(n+ e)2n

)
. �

Theorem 3.4.3. The time complexity of arrac is O
(
(n + e)2n

)
, where n is the

number of agents in N , and e is the number of links in g.

Proof. It can easily be verified that the time complexities of arrac in steps 1 to 4

are at most O(n + e), which is the known time complexity of both a depth- and a

breadth-first search.

The time complexity of step 5 is O
(
(n + e)2n

)
, due to the following worst case

example. Consider a BRP where g =
{

(1, j) : j ∈ N \ {1}
}

. This network, which is

depicted in Figure 3.4, does not contain groups, thus g′ = g. Next, there are n − 2

rootagents in g′ (all agents except i and 1). Therefore, the payoff’s of 2n−2 actions
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i

1

Figure 3.4: Worst case example for algorithm arrac.

are calculated by arrac. It requires a breadth-first search per calculation (with time

complexity O(n+ e)). Thus, the time-complexity of step 5 is O
(
(n+ e)2n

)
.

Hence, we conclude that the time complexity of the 5th step is dominant. Therefore

the time complexity of arrac is also O
(
(n+ e)2n

)
. �

Observe that both arrac’s time and space complexity do not depend on whether

arrac searches for rootagents in step 4.

We showed that the worst case time complexities of arrac and brute-force are

equal. However, brute-force requires this complexity for any instance of the BRP,

whereas arrac only requires this complexity for worst case instances, like the network

depicted in Figure 3.4. This motivates our focus on the average case analysis of arrac

in the next section.

3.5 Average case analysis of ARRAC

In this section we study the average case performance of arrac. From the previous

section we know that the number of actions that are checked in step 5 determines the

running time of arrac. We would like to know how much this number is reduced from

2n−1 for the average case. Therefore, we will measure the performance of arrac by

this number.

For 4 to 31 agents, and various density values d between 0 and 1, we generate random

networks according to the model proposed by Erdős and Rényi (1960). In this model,

each of possible links independently occurs with probability d. Since we assumed that

agent i does not have incoming or outgoing links, we generate random networks on

n− 1 agents, and then add i as an isolated agent. Thus, the estimated number of links

in a random network is (n − 1)(n − 2)d. For each pair (n, d) that we choose, we run

arrac on 100.000 random networks.

For each of these networks, arrac finds a best response. We distinguish two cases:
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one where arrac searches for rootagents in step 4, and one where it does not. First

we consider the first case, i.e. the case where link costs are (owner-)homogeneous. The

average numbers of actions that arrac checks in step 5 are shown in Table 3.1. For

each of these numbers, the standard error is less than 0.8%.

We also calculated the standard deviation for each pair (n, d). The highest values

occurred for intermediate density values. For instance, it is 171 for n = 31 and d = 0.05.

For low and high density values, the standard deviation is much lower (it is 3.7 for

n = 31, d = 0.005 and it is 0.07 for n = 31, d = 0.2).

n \ d 0.005 0.01 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

4 5.94 5.88 5.71 5.43 5.16 4.91 4.67 4.45 4.24 4.03
5 7.88 7.77 7.43 6.89 6.38 5.92 5.49 5.10 4.75 4.41
6 9.80 9.61 9.05 8.20 7.41 6.71 6.08 5.52 5.01 4.56
7 11.70 11.41 10.59 9.36 8.28 7.32 6.50 5.77 5.11 4.53
8 13.59 13.19 12.05 10.40 9.00 7.82 6.80 5.90 5.12 4.43
9 15.45 14.93 13.44 11.35 9.67 8.26 7.06 5.95 5.03 4.23
10 17.30 16.62 14.76 12.23 10.28 8.70 7.29 5.97 4.87 3.97
11 19.11 18.28 16.00 13.04 10.92 9.11 7.45 5.91 4.63 3.68
12 20.92 19.91 17.20 13.87 11.64 9.63 7.56 5.73 4.31 3.36
13 22.72 21.51 18.34 14.73 12.44 10.12 7.58 5.45 3.99 3.07
14 24.48 23.07 19.43 15.72 13.49 10.59 7.44 5.12 3.65 2.81
15 26.24 24.61 20.50 16.88 14.59 10.89 7.21 4.72 3.33 2.61
16 27.99 26.10 21.57 18.36 15.90 11.11 6.86 4.32 3.05 2.46
17 29.69 27.58 22.60 20.05 17.26 11.15 6.43 3.96 2.82 2.33
18 31.39 29.03 23.71 22.40 18.54 10.92 5.92 3.59 2.63 2.24
19 33.07 30.43 24.85 25.09 19.74 10.65 5.48 3.31 2.49 2.17
20 34.73 31.79 26.12 28.60 20.76 10.05 5.00 3.08 2.37 2.12
21 36.38 33.17 27.58 32.67 21.35 9.54 4.57 2.85 2.28 2.09
22 38.01 34.46 29.24 37.14 21.88 8.84 4.18 2.68 2.21 2.06
23 39.64 35.81 31.14 42.88 21.77 8.18 3.82 2.54 2.15 2.04
24 41.24 37.09 33.73 48.55 21.57 7.53 3.53 2.43 2.11 2.03
25 42.80 38.36 36.85 54.75 21.18 6.89 3.26 2.33 2.09 2.02
26 44.38 39.60 41.20 60.60 20.28 6.32 3.06 2.26 2.06 2.01
27 45.92 40.84 45.93 66.22 19.12 5.76 2.89 2.21 2.05 2.01
28 47.46 42.09 53.11 73.05 18.19 5.28 2.72 2.16 2.04 2.01
29 48.97 43.28 61.16 76.77 16.91 4.90 2.60 2.12 2.02 2.00
30 50.47 44.48 73.39 82.16 15.74 4.46 2.49 2.10 2.02 2.00
31 51.94 45.70 87.87 85.36 14.68 4.14 2.40 2.07 2.01 2.00

Table 3.1: The average numbers of actions that arrac checks.

Several observations can be made by analyzing this table:

Fix n, decrease d. As the density goes to 0, the average number converges to 2(n−1).

Indeed, in an empty network, there are (besides agent i) n−1 connected sets, i.e. n−1

singletons, and for each of them two possible best responses are checked: either the

singleton is contained in B or not. We conclude that for low density values, the con-

nected set approach of arrac is very effective.

Fix n, increase d. The number of checked actions converges to 2 as the density

increases. This can be explained by the fact that the more the network becomes dense,
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the larger the groups are. For high values of d, it is very likely that there will be one

group containing all agents. When this is the case, the number of best responses that

have to be checked is 2. Thus, for high density values, the replacement of groups by

representatives is very effective.

Fix d, increase n. For a fixed d and an increasing n, the average number of checked

actions first increases, then decreases, and finally converges to 2. This convergence

can be explained by looking at the connectivity of the networks. By Erdős and Rényi

(1960) we know that the network becomes strongly connected as n increases towards

infinity. This can already be seen in Table 3.1 for d = 0.2. The point at which the

number of checked actions starts to decrease depends on d. Figure 3.5 illustrates the

scope of these points.

n

d

10

22

0.075 0.15

Figure 3.5: Turning points in Table 3.1.

For the case where arrac does not search for rootagents in step 4, we run the

same set of BRP instances. The average numbers of actions that arrac checks are

shown in Table 3.2. For reference, we also show the numbers of actions that brute-

force checks: 2n−1. As can be seen here, arrac almost behaves like brute-force

for intermediate density values. Observe that also in this case, the number of checked

actions will finally converge to 2 as n increases.

By comparing Tables 3.1 and 3.2, we conclude that finding rootagents in step 4 is

an effective reduction technique for intermediate density values.

In Table 3.3 we summarize our observations. Recall that the connectivity of a

network depends on both n and d.
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2n−1 n \ d 0.005 0.01 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

8 4 6 6 6 6 6 6 6 6 6 6

16 5 8 8 8 8 8 9 9 9 9 9

32 6 10 10 10 11 11 12 13 14 15 15

64 7 12 12 12 14 16 19 22 24 25 25

128 8 14 14 15 18 24 31 38 42 43 40

256 9 16 16 17 24 38 56 70 75 71 61

512 10 18 18 20 35 68 106 129 128 110 82

1 024 11 20 20 24 56 131 208 236 209 154 99

2 048 12 22 23 29 97 259 401 412 315 196 106

4 096 13 24 25 36 183 530 766 677 430 224 96

8 192 14 26 27 48 364 1 095 1 401 1 029 546 229 80

16 384 15 28 30 66 741 2 205 2 435 1 471 625 203 55

32 768 16 30 32 100 1 598 4 404 4 077 1 985 630 167 37

65 536 17 32 35 153 3 409 8 466 6 362 2 417 616 115 23

131 072 18 35 38 278 7 352 15 846 9 389 2 696 515 72 13

262 144 19 37 41 508 15 830 28 400 13 448 2 923 396 44 9

524 288 20 39 45 965 33 090 49 688 17 882 2 881 274 24 6

1 048 576 21 41 49 1 980 70 899 83 440 22 347 2 401 178 13 4

2 097 152 22 43 55 4 265 144 543 136 296 25 180 1 972 117 8 4

4 194 304 23 46 61 8 392 292 690 207 424 28 757 1 333 90 5 3

8 388 608 24 48 71 18 866 577 121 310 220 30 660 1 162 24 5 3

16 777 216 25 50 84 40 489 1 133 574 446 672 28 732 401 18 4 3

33 554 432 26 53 104 90 759 2 136 662 614 349 25 672 381 8 4 3

67 108 864 27 55 129 197 223 4 065 543 801 787 23 069 243 6 3 2

134 217 728 28 58 163 419 180 7 461 436 1 010 378 22 171 45 5 3 2

268 435 456 29 61 248 957 834 13 131 450 1 171 092 18 345 21 5 3 2

536 870 912 30 63 391 2 144 006 23 159 031 1 345 126 6 159 18 4 3 2

1 073 741 824 31 67 523 4 786 071 39 597 007 1 442 671 4 561 11 4 3 2

Table 3.2: The average numbers of actions that arrac checks without finding roota-

gents in step 4, rounded to natural numbers.

Network connectivity Dominant reduction technique

Low Connected set approach

Medium Selection of rootagents

High Replacement of groups by representatives

Table 3.3: Analysis of arrac.

3.6 Two-way flow case

Besides the one-way flow model, Bala and Goyal (2000a) also propose the two-way flow

model. In Chapter 7, we study the two-way flow model into detail. The only difference

with the one-way flow model is that profits flow in both directions of the links. In

this section, we propose a polynomial-time algorithm for finding a best response in the

two-way flow model, where link costs and profits are heterogeneous.

Let Nu
i (g) = {j ∈ N : an undirected path between j and i exists in g} be the set of

observed agents. The payoff functions of the two-way flow model are given by

πi(g) =
∑

j∈Nu
i (g)

vij −
∑

j∈Nd
i (g)

cij ∀i ∈ N. (3.12)

Here vij is the profit that agent i receives from observing j (via an undirected path)

and cij is the cost of link (j, i) for agent i. We refer to these payoff functions as B&G-2
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functions.

We identify a Best Response Problem for the two-way flow model (BRP2 in short)

by a tuple (N, i, c, v, g), where N is a set of agents, i ∈ N is an agent who searches for

a best response, c and v are the costs and profits that specify a B&G-2 function w.r.t.

agent i, and g is a network on the agents in N .

We may assume that i does not have incoming links in g. However, we cannot

assume that i does not have outgoing links in g, because i receives profits via these

links.

Consider the following algorithm for solving BRP2, which will be called rcr (short

for Replacement of Connected sets by Representatives).

Algorithm 3.6.1. rcr

Input BRP2 (N, i, c, v, g).

Output A best response B.

Step 1 Create a new best response problem (N ′, i, c, v′, g′) as follows.

Put the following agents in set N ′: a representative s per connected set S in g

where i 6∈ S, such that cis = mink∈S cik.

For each j ∈ N ′, define v′ij =
∑

k∈S vik where S is the connected set that j

represents.

Let g′ = ∅.

Step 2 Let B be an action of agent i, initiated as the empty set. For each j ∈ N ′,
put j in B if cij ≤ v′ij . Action B is a best response to the BRP2 instance

(N ′, i, c, v′, g′), and moreover, it is a best response to the original BRP2 instance

(N, i, c, v, g).

End

The correctness of this algorithm is easily established.

Observe that this algorithm is similar to some steps in arrac. A group in the one-

way flow model has the same role as a connected set in the two-way flow model: agent

i observes all agents in a connected set by linking up with one of them. Therefore,

connected sets are replaced by representatives in rcr. Furthermore, notice that the

connected set in which i is active by an outgoing link has no representatives in N ′,
because i already receives all profits from this connected set.

The time complexity of step 1 is O(n+ e) because a breadth-first search has to be

applied in order to find the connected sets. Further, the time complexity of step 2 is

O(n), since all agents in N ′ have to be checked. Hence, the following theorem is easily

established.

Theorem 3.6.2. Algorithm rcr is a polynomial-time algorithm in n = |N |.



Chapter 4

Local- and global-Nash

networks

In the previous two chapters, we studied a model of unilateral network formation that

is introduced by Bala and Goyal (2000a). Each agent forms a set of links. The links

of all agents together define a directed network. The links that are formed by agent i

are depicted as arcs pointing at i. A payoff function assigns a payoff for each agent on

base of the formed network.

The payoff functions that Bala and Goyal (2000a) study are the following. Each

agent pays a certain cost for each own link, i.e. for each link pointing at him. Further,

each agent receives certain profits from observing other agents. Here, two cases are

considered. In the first case, agent i observes agent j if a directed path exists from j to

i, and in the second case if an undirected path exists between them. These two cases

are called the one-way flow model (studied in Chapters 2 and 3) and the two-way flow

model (studied in Section 3.6) respectively.

Both models are extended by introducing decay (Bala and Goyal (2000a), Kannan

et al. (2007), and Feri (2007)), that is, the value of a profit decreases with the length

of the connection path counted in number of links. Another extension that is studied

in the literature is that links are not perfectly reliable (Bala and Goyal (2000b), Haller

and Sarangi (2005), and Haller et al. (2007)).

Observe that all these models (one-way and two-way flow, with and without decay,

with perfectly and imperfectly reliable links) only differ from each other in payoff

function. In this chapter we prove the existence of Nash networks for a general class

of payoff functions. For this purpose, we propose a framework of axiomatic payoff

properties that is inspired by the one-way flow model without decay. These properties

are intuitive and they are sufficient to guarantee the existence of Nash networks.

Our line of proof and our payoff properties are oriented on local actions, which

consist of the following types: an addition, a deletion, and a replacement of a link, and

51
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a pass. Local actions are easier to analyze than global actions (defined as changing

the whole set of own links at once). From a computational point of view, we saw in

the previous chapter that the problem of finding a best global response is NP-hard.

However, we show that finding a best local response can be done in polynomial time.

We use this local approach to obtain global results which are the existence of global-

Nash networks, and, in the next chapter, the termination of an iterative procedure of

local actions at a global-Nash network.

We define a local-Nash network as a network in which no agent can improve by a

local action. We prove the existence of local-Nash networks for a framework of payoff

properties. Moreover, the networks that we find are proper, i.e. each agent has at

most one outgoing link. We show that proper local-Nash networks are also global-

Nash when the payoff functions satisfy an additional property. We show independence

of our properties, and moreover, we show that this framework of properties yields a

generalization with respect to the payoff functions in the one-way flow model with

owner-homogeneous link costs and heterogeneous profits.

Besides the existence, we study the architecture of local-Nash networks. For the

properties that we propose, any network can be local-Nash, for instance when the

payoff function equals 0 for each agent and for each network. Therefore, we focus on

the architecture of strict local-Nash networks. We show that for payoff functions that

satisfy the properties of our framework, strict local-Nash networks are characterized

by a larger set of network architectures than proper networks.

The chapter is organized as follows. In Section 4.1 we present the model and the

notations that we use throughout. In Section 4.2 we prove that for three payoff prop-

erties, each proper local-Nash network is also global-Nash. In Section 4.3, we prove the

existence of proper local-Nash networks for games where the payoff functions satisfy

a set of axiomatic properties. As a corollary we obtain the existence of global-Nash

networks. In Section 4.4, we study the architecture of (strict) local-Nash networks. We

prove independence of our payoff properties in Section 4.5. In Section 4.6 we relate

them to payoff functions of the one-way flow model, and provide examples of other pay-

off functions that satisfy all properties. Finally, in Section 4.7 we provide concluding

remarks.

This chapter is mainly based on Derks et al. (2008b).

4.1 Model and notations

We will use the same notations that we used throughout Chapters 2 and 3.

Further, let Car(g), the carrier of g, denote the set of so-called active agents in

network g, being those agents who are begin- or endpoints of a link in g.

Recall the following definitions. For a network g, we refer to gj as the component

of g where agent j is active (see (2.1)). Let g−i be the network obtained from g after

removing the links owned by i. Notice that an outgoing link of i, e.g. (i, j), may still
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exist in g−i. Further, we define g−ij = gj−i + (j, i), where gj−i means (g−i)j .
For each agent i, let πi : G → R be a payoff function. In this chapter we introduce

axiomatic properties for payoff functions in general. These properties are inspired by

the one-way flow model.

Recall that an action S of agent i is defined as a subset of agents: S ⊆ N \ {i}. In

the sequel we will refer to such an action as a global action. When agent i plays a global

action in network g, he is able to change his set of links completely. In this chapter, we

consider a type of action, where agent i is restricted to change at most one link. Let S

be a local action of agent i in network g, defined as S ⊆ N \ {i} where |Nd
i (g) \ S| ≤ 1

and |S \Nd
i (g)| ≤ 1. In other words, we consider 4 types of local actions:

(1) passing S = Nd
i (g),

(2) adding a new link (pointing at i) S = Nd
i (g) ∪ {j},

(3) deleting an existing link (pointing at i) S = Nd
i (g) \ {j}, and

(4) replacing an existing link by a new link S = Nd
i (g) \ {k} ∪ {j}.

The network, after i chooses to link with the agents in S w.r.t. g, is described by

g−i +
{

(j, i) : j ∈ S
}
.

A local action S of agent i is called a good local response w.r.t. πi and g if

πi
(
g−i + {(j, i) : j ∈ S}

)
≥ πi(g).

A local action S of agent i is called a best local response w.r.t. πi and g if

πi
(
g−i + {(j, i) : j ∈ S}

)
≥ πi

(
g−i + {(j, i) : j ∈ T}

)
for all local actions T .

A network g is called a local-Nash network if Nd
i (g) is a best local response for each

i ∈ N . A network g is called a strict local-Nash network if Nd
i (g) is the unique best

local response for each i ∈ N .

Analogous definitions apply to the global case. Notice that we used the global case

definitions in Chapters 2 and 3.

In Chapter 3, we proved that finding a best global response is NP-hard. In contrast,

a best local response is much easier to find. In the following proposition we show that

the number of local responses that an agent can choose from, is polynomially bounded

by the square of the number of agents. This implies that finding a best local response

can be done within polynomial time, because by checking all possible local actions, a

best one can be found.

Proposition 4.1.1. The number of possible local actions that an agent can perform,

is bounded by n2, where n is the number of agents.
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Proof. The number of possible local actions that agent i can perform, depends on the

number of neighbors of i in g. If we denote this number by m ≤ n − 1, then agent i

can do n−m− 1 additions, m deletions and (n−m− 1)m replacements. Hence, the

number of possible local actions for agent i equals

n−m− 1 +m+ (n−m− 1)m = (n− 1) + (n−m− 1)m

≤ (n− 1) + (n−m− 1)(n− 1)

= (n−m)(n− 1)

≤ n2.

�

In this chapter we use the local approach in order to prove the existence of local-

and global-Nash networks. In the next chapter we examine a dynamic game model in

which agents play local actions iteratively.

4.2 Local-Nash and global-Nash networks

Recall that a network is called proper if the outdegree of each agent is at most one.

Further, agent i is called a topagent in network g whenever he observes all agents in

his component, i.e. Ni(g
i) = Car(gi) ∪ {i}. An illustrative proper network, in which

the topagents are identified, is depicted in Figure 4.1. Notice that a topagent either

is contained in a cycle, or he has no outgoing links. Further, notice that in proper

networks also the converse holds.

t

t t

t

t

t

t

t

Figure 4.1: A proper network with topagents identified by t ’s.

We show that for a specific class of payoff functions, each proper local-Nash network

is also global-Nash. This class consists of all payoff functions that have three properties

which we will define next: DA (short for disjoint additivity), NA (short for naturality),

and DE (short for downstream efficiency).
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Two networks g and g′ are said to be disjoint with respect to an agent i, or i-disjoint,

if no agent or only agent i is active in both g and g′: Car(g) ∩ Car(g′) ⊆ {i}.

Property DA We say that a payoff function πi is disjoint additive (DA for short), if

for each two networks g and g′, disjoint w.r.t. agent i, we have

πi(g + g′) = πi(g) + πi(g
′).

Let a link (j, i) be called profitable in g if:

πi(g) ≥ πi(g − (j, i)) if (j, i) ∈ g,

and

πi(g + (j, i)) ≥ πi(g) if (j, i) 6∈ g.

Thus, each profitable link that is not present yet is worth adding, and each non-

profitable link that is present is worth deleting. The notion of profitability is very

intuitive in network formation.

Another notion which indicates the importance of a link is the following. Let a link

(j, i) be called beneficial in g if it is profitable in gj−i, i.e.

πi(g−ij) ≥ πi(gj−i).

Observe that (j, i) does not have to be contained in g. A network is called beneficial if

the existing links in that network are beneficial.

Lemma 4.2.1. If network g is proper, and π is disjoint additive, then profitability

and beneficiality are equivalent notions for all existing links and for some non-existing

links:

(i) πi(g)− πi(g − (j, i)) = πi(g−ij)− πi(gj−i) for all (j, i) ∈ g,

(ii) πi(g + (j, i))− πi(g) = πi(g−ij)− πi(gj−i) for all (j, i) 6∈ g with j 6∈ Ni(g).

Proof. First, let (j, i) ∈ g. Since g is proper, g−ij and g−g−ij are i-disjoint. Therefore,

by DA we have

πi(g) = πi(g−ij) + πi(g − g−ij). (4.1)

Also, gj−i and g − gj−i are i-disjoint. Hence by DA we obtain

πi(g − (j, i)) = πi(g
j
−i) + πi(g − gj−i − (j, i)). (4.2)

With g − g−ij = g − gj−i − (j, i), we obtain (i) from (4.1) and (4.2).

Now, let (j, i) 6∈ g, with j 6∈ Ni(g). Networks g−ij and g−gj−i are i-disjoint, because

suppose otherwise: then, an agent k 6= i exists, active in both g−ij and g − gj−i. This
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implies that (k, i) ∈ g, because any other link attached to k is inside g−ij , and therefore

not present in g−gj−i. Since g is proper, and k has one outgoing link in it (link (k, i)), he

cannot have other outgoing links. Therefore, k is a topagent in gj−i, and thus observes

all agents who are active in gj−i, including j. This implies that j ∈ Ni(g), which is a

contradiction.

Thus, g−ij and g − gj−i are i-disjoint, and therefore the networks gj−i and g − gj−i
are also i-disjoint. By DA we obtain

πi(g−ij) + πi(g − gj−i) = πi(g−ij + g − gj−i) = πi(g + (j, i)) (4.3)

and

πi(g
j
−i) + πi(g − gj−i) = πi(g

j
−i + g − gj−i) = πi(g). (4.4)

Hence, (ii) follows from (4.3) and (4.4). �

The next payoff property states that connecting to an agent who is already observed

is not a strictly improving action.

Property NA We say that πi is natural (NA for short) if

πi(g + (k, i)) ≤ πi(g)

whenever k ∈ Ni(g), i.e. there is a directed path from k to i in network g.

Thus, in a network where i already observes k via another link, say (j, i), the addition

of (k, i) is not an improving action due to NA. The next payoff property can be seen

as a “twin” property.

Property DE Payoff function πi satisfies DE (short for downstream efficiency) if

πi(g + (k, i)) ≤ πi(g + (j, i))

for any network g where (j, i) 6∈ g and (k, i) 6∈ g, and where a directed path exists from

k to j in g−i.

Due to DE, the addition of link (j, i) is at least as good as the addition of (k, i).

Observe that the difference between NA and DE is that in the situation where NA

is applicable, link (j, i) does exist (on the directed path from k to i), whereas in the

situation where DE is applicable, link (j, i) does not exist.

In the following theorem we show that proper local-Nash networks are also global-

Nash whenever the payoff functions satisfy the three introduced properties.

Theorem 4.2.2. Let π be a joint payoff function that satisfies DA, NA, and DE.

Then each proper local-Nash network is global-Nash.
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Proof. Let g be a proper local-Nash network. Suppose to the contrary that g is not

global-Nash, say i can strictly improve in g. Let S = Nd
i (g) be his current action, and

let S̃ be a strictly improving action, such that |S̃ \ S| is as small as possible and such

that among those, |S \ S̃| is as small as possible. Let g̃ be the network obtained after

i plays S̃.

First assume j ∈ S̃ \ S.

Suppose that j ∈ Ni(g). Then agent i observes j via, say, agent k ∈ S in g, i.e.

there is a directed path from j to k in g−i = g̃−i. By DE the action S̃ \ {j}∪ {k} is at

least as good as S̃. Now
∣∣(S̃ \{j}∪{k})\S∣∣ < |S̃ \S|, so that we have a contradiction.

Hence j 6∈ Ni(g). Suppose that networks g̃ − g−ij and g−ij are not i-disjoint.

Since g−i = g̃−i, a link (k, i) exists in g̃ such that k ∈ Car(gj−i). By DE we may

assume that j is a topagent in g−i, and therefore a directed path exists from k to

j in g−i. Hence, by NA, it follows that S̃ \ {k} is at least as good as S̃. Now∣∣(S̃ \ {k}) \ S∣∣ < |S̃ \ S|; a contradiction. Therefore, networks g̃ − g−ij and g−ij are

i-disjoint. Also, g̃ − g−ij = g̃ − (j, i)− gj−i and gj−i are i-disjoint.

By DA we obtain

πi(g̃) = πi(g̃ − g−ij) + πi(g−ij), and (4.5)

πi(g̃ − (j, i)) = πi
(
g̃ − (j, i)− gj−i

)
+ πi(g

j
−i). (4.6)

Since g is local-Nash, we have πi(g + (j, i)) ≤ πi(g). By Lemma 4.2.1(ii) and

j 6∈ Ni(g), it follows that πi(g−ij) ≤ πi(g
j
−i). Hence by (4.5) and (4.6) we obtain

πi(g̃) ≤ πi(g̃−(j, i)). Hence S̃\{j} is at least as good as S̃, with
∣∣(S̃\{j})\S∣∣ < |S̃\S|.

This is a contradiction.

We conclude that S̃ ⊆ S.

Now assume j ∈ S \ S̃.

Suppose that j ∈ Ni(g̃), say (j, k) ∈ g̃. Then, also (j, k) ∈ g. Since (j, i) ∈ g, agent j

has two outgoing links, which is a contradiction with the properness of g. We conclude

that j 6∈ Ni(g̃).

Since g is proper local-Nash, (j, i) is profitable in g and by Lemma 4.2.1(i) also

beneficial in g. Since gj−i = g̃j−i, link (j, i) is also beneficial in g̃. Further, since g̃ ⊂ g,

network g̃ is also proper. By Lemma 4.2.1(ii), (j, i) is also profitable in g̃. Hence S̃∪{j}
is at least as good as S̃, with

∣∣S \ (S̃ ∪ {j})
∣∣ < |S \ S̃|. This is a contradiction.

Hence we conclude that S̃ = S, which contradicts S̃ being a strict improvement.

Therefore, g is global-Nash. �

For more general payoff functions, proper local-Nash networks do not need to be

global Nash as can be seen by the following example.

Example 4.2.3. Consider the following payoff function:

πi(g) =
∣∣∣{j ∈ Nd

i (g) : j 6∈ Ni(g − (j, i))
}∣∣∣. (4.7)
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Consider a network on 4 agents. Let the payoff function π1(g) be defined as in (4.7),

and let π2(g) = π3(g) = π4(g) = 0 for all networks g. Then, the network depicted in

Figure 4.2(a) is a proper local-Nash network. However, it is not global-Nash, because

agent 1 can switch to the network depicted in Figure 4.2(b), which yields payoff 2

instead of 1. This network is global-Nash.

1

2

3

4

1

2

3

4

(a) (b)

Figure 4.2: A proper local-Nash network that is not global-Nash (a), and a global-Nash

network (b).

Payoff function π1(g) satisfies DA, since it can be written as the sum over payoffs

w.r.t. 1-disjoint subnetworks. Further, NA is satisfied because the addition of link

(k, 1) to a network in which a directed path from k to 1 already exists is not profitable.

However, it does not satisfy DE, because agent 1’s payoff in the network depicted in

Figure 4.2(b) is strictly higher than his payoff obtained by replacing (2, 1) by (3, 1). ♦

4.3 Existence of local-Nash networks

Next, we identify a class of properties for which we prove the existence of proper local-

Nash networks. For this, we introduce four new properties. These properties only

regard beneficiality. Recall that a link (j, i) is beneficial in g whenever πi(g−ij) ≥
πi(g

j
−i). The properties concern how beneficiality of a link is preserved when the

network is changed, or how beneficiality of a link depends on the beneficiality of other

links.

Property BT Payoff function πi satisfies BT (short for beneficial topagent) if the fol-

lowing holds. Let link (k, i) be beneficial in network g, and suppose there are topagents

in the component gk−i. Then there is a topagent j in gk−i such that πi(g−ij) ≥ πi(g−ik).

Notice that this property is implied by DE. The following property is also implied

by DE.

Property BF Payoff function πi satisfies BF (short for beneficial farthest) if the

following holds. Let link (k, i) be beneficial in network g; let the component gk−i be

proper and let agent i be active in gk−i (there is an outgoing link at i in gk−i). Then also
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link (j, i) is beneficial where j is the agent farthest away from i (counted in number of

links) in network g.

Notice that since component gk−i is proper and i is active in it, agent j is the unique

topagent who is farthest away from i in network g. Property BF is also implied by

DE. However, it is independent of BT as we will see in Section 4.5. Furthermore,

BT and BF do not imply DE. This is illustrated by Example 4.2.3, where the payoff

function given by (4.7) does not satisfy DE, whereas it satisfies both BT and BF,

since πi(g−ij) = 1 and πi(g
j
−i) = 0 for each network g and each agent j.

The following property describes that beneficial links remain beneficial while the

network grows:

Property BG Payoff function πi satisfies BG (short for beneficial growth) if

πi
(
(g + (k, r))−ij

)
≥ πi

(
(g + (k, r))j−i

)
for any two agents k, r, whenever πi(g−ij) ≥ πi(gj−i).

Notice that in case we have r = i, BG trivially holds, since (g + (k, r))−ij = g−ij .
The final property states that beneficiality is preserved when we delete a spoke

from the network. Link (k, r) is called a spoke in g if there exists a cycle in g − (k, r)

containing both k and r.

Property BS Payoff function πi satisfies BS (short for beneficial shrink) if

πi
(
(g − (k, r))−ij

)
≥ πi

(
(g − (k, r))j−i

)
whenever πi(g−ij) ≥ πi(gj−i) and link (k, r) is a spoke in g.

The properties BF, BG, and BS are trivially satisfied by payoff functions for which

πi(g) ≥ πi(g−i) for all networks g. An example of such a function is πi(g) = |Ni(g)\{i}|
being the number of agents in g observed by i. This function also satisfies DA, NA,

and BT.

Let us call a payoff function orderly if it satisfies the properties DA, NA, BT, BF,

BG, and BS.

Let κ(g) be the connection number of network g, defined as

κ(g) =
∑
i∈N
|Ni(g)|.

Observe that neither the addition of a link nor the deletion of a spoke decreases the

connection number.

Theorem 4.3.1. For orderly joint payoff functions any proper beneficial network with

maximal connection number is a local-Nash network.
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Proof. Observe that the empty network is proper and beneficial. So, there is a proper

beneficial network, say g, such that among these networks the connection number κ(g)

is maximal. We prove that g is local-Nash by deriving a contradiction in the sense that

otherwise a proper beneficial network exists with a higher κ-value than g.

So, suppose that g is not local-Nash, say agent i can strictly improve by playing a

local action.

Pass: Clearly, this action is not a pass.

Deletion: This local action is neither a deletion because all links of agent i are

beneficial, and therefore also profitable by Lemma 4.2.1(i) due to g being proper and

πi satisfying DA.

Replacement: Suppose the strictly improving local action is a replacement, say link

(k, i) is replaced by link (j, i), and let the obtained network be g̃ = g − (k, i) + (j, i).

Notice that k is the unique topagent in gk−i, since g is proper. If both agents k and j

are active in gk−i, then, by property BT it follows that πi(g−ij) ≤ πi(g−ik). However,

g − g−ik and g̃−ij = g−ij are i-disjoint and their union is g̃, so that by DA we have

πi(g − g−ik) + πi(g−ik) = πi(g) < πi(g̃) = πi(g − g−ik) + πi(g−ij),

i.e., πi(g−ij) > πi(g−ik); a contradiction.

Therefore, agents k and j are active in different components of g−i. The networks

g−ik and g− g−ik + (j, i) are i-disjoint, with union equal to g+ (j, i), and the networks

gk−i and g−g−ik +(j, i) are i-disjoint, with union g− (k, i)+(j, i). Applying DA twice,

we obtain

πi(g + (j, i)) = πi
(
g − g−ik + (j, i)

)
+ πi(g−ik)

≥ πi
(
g − g−ik + (j, i)

)
+ πi(g

k
−i)

= πi
(
g − (k, i) + (j, i)

)
.

The inequality follows from the beneficiality of (k, i) in g. We conclude that the addition

of (j, i) is at least as good as the replacement of link (k, i) in g by (j, i).

Addition: So, we may assume that the strict improving local action is an addition.

Let this addition be (j, i) and let the obtained network be

g′ = g + (j, i). (4.8)

If the component (g′)j−i, which is equal to gj−i, is already linked up with i, say (k, i) ∈ g
and k ∈ Car(gj−i), then k is the unique topagent in gj−i, due to the properness of g.

So, there is a directed path from j to k in g, and with (k, i) there is a directed path

from j to i in g, implying πi(g
′) = πi(g + (j, i)) ≤ πi(g) because of NA. This is a

contradiction to the fact that adding (j, i) is strictly improving.

Therefore, the component (g′)j−i = gj−i is not linked up with i in g, and by BT we

may assume that j is a topagent in gj−i.
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Since g is proper, and since j 6∈ Ni(g), by Lemma 4.2.1 and DA, link (j, i) is

beneficial in g′. Also, the other links are beneficial in g′ due to the beneficiality of

g and BG. So, g′ is a beneficial network. Further, the number κ(g′) is higher than

κ(g), so that g′ cannot be proper, because by assumption there cannot be proper and

beneficial networks with connection number higher than κ(g). The only outdegree

changed by going from g to g′ is the one of agent j. Therefore, the outdegree of j in g′

equals 2, say next to link (j, i), also (j, k) is present in g′. Since j is a topagent in gj−i
there is a directed path from k to j in gj−i. Observe that this is also a directed path in

(g′)j−k.

Extending the directed path from k to j via (j, i) in (g′)j−k in a unique way (since it

is a proper network), we arrive at an agent, say r, farthest away from k (see Figure 4.3).

Since (j, k) is beneficial for k, in g′, also (r, k) is beneficial in g′ due to BF.

j i

k r

Figure 4.3: The addressed links and directed paths (dashed arcs) of network g′.

Consider the addition of (r, k) in g′. From BG and (r, k) being beneficial in g′, we

conclude that g′ + (r, k) is beneficial. Further, (j, k) is a spoke in this network. After

deletion of this spoke, by BS we again obtain a beneficial network

g′′ = g′ + (r, k)− (j, k), (4.9)

with a connection number at least as high as κ(g′) and thus higher than κ(g). Hence

g′′ cannot be proper. This implies that the outdegree of agent r is greater than 1 in

g′′. Besides (r, k) we have another link, say (r, s), and s is necessarily located on the

unique directed path from k to r in g′, for otherwise, s would be farther away from k

than r is.

j i

k r
s

Figure 4.4: Described situation in g′′, where s is located on the directed path from k

to r.

This directed path also exists in g′′, and together with (r, k) it forms a cycle in

g′′ with (r, s) being a spoke of it (see Figure 4.4). By deletion of (r, s) we obtain a
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beneficial network

g′′′ = g′′ − (r, s), (4.10)

due to BS. Its connection number is higher than the one of g. Observe that g′′′ is proper:

agents j and r (the only agents whose outgoing links are changed w.r.t. g) both have

exactly one outgoing link in g′′′. This is in contradiction with our assumption that g

is a proper network with maximal connection number. We conclude that there are no

strictly improving additions available, i.e. g is local-Nash. �

When we relate the previous theorem with Theorem 4.2.2 (proper local-Nash net-

works are global-Nash if the joint payoff function satisfies DA, NA, and DE) and with

the observation that BT and BF are implied by DE, we obtain the following corollary.

Corollary 4.3.2. For joint payoff functions that satisfy DA, NA, DE, BG, and

BS, global-Nash networks exist. Specifically, the proper and beneficial networks with

maximal connection number are global-Nash.

4.4 Architecture of (strict) local-Nash networks

In this section, we study the architecture of local-Nash networks. In the previous section

we proved existence of proper local-Nash networks for orderly joint payoff functions.

However, proper networks are not the only candidates for local-Nash networks. Con-

sider for instance the joint B&G-1 function of Example 2.2.4: πi(g) = |Ni(g)|−|Nd
i (g)|

for all i ∈ N . This function is orderly as we will see in Section 4.6. It is easily veri-

fied that the non-proper network depicted in Figure 2.2 is local-Nash. However, this

network is not strict local-Nash, because the replacement of (i, j) by (k, j) yields the

same payoff for agent j. When agent i successively deletes the spoke (k, i), we obtain

a strict local-Nash network, which is also proper.

Moreover, any network can be local-Nash for payoff functions that satisfy all our

properties, for instance when πi(g) = 0 for each agent i and each network g. We will

therefore focus on the architecture of strict local-Nash networks. In the next result,

we characterize these networks.

Recall from Chapter 2 that network g is called minimal if for each link (j, i) ∈ g, j

is not observed by i in network g − (j, i).

Theorem 4.4.1. Let π be an orderly joint payoff function, and let g be a strict local-

Nash network. Then

(i) g is a minimal network;

(ii) for all agents i, j, and k where (i, j) ∈ g and (i, k) ∈ g, there are no topagents

active in gk−j;

(iii) each agent is contained in at most one cycle.
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Proof.

(i) Suppose to the contrary that a network, say g, exists which is strict local-Nash,

while it is not minimal. Then a directed path from k to i exists in g and also, the link

(k, i). By NA it follows directly that agent i can delete link (k, i), which yields an

equal or higher payoff; a contradiction.

j

i
k

Figure 4.5: The situation of two outgoing links.

(ii) The situation where (i, j) and (i, k) exist is depicted in Figure 4.5. Suppose to the

contrary that there are topagents active in component gk−j . Then by BT, for at least

one of these topagents, say agent `, the replacement of (i, j) by (`, j) is a good local

response. Hence g is not strict local-Nash, and therefore we conclude that there are no

topagents active in gk−j .

(iii) Suppose to the contrary that an agent i exists who is contained in at least two

different cycles in g, say C and C ′. Suppose that i has an outgoing link that is contained

in both C and C ′. By following the directed path on the union of C and C ′ that starts

with this link, we necessarily arrive at an agent where C and C ′ diverge. Without

loss of generality, we may assume that this agent is i. This situation is depicted in

Figure 4.6. By BF it follows that the replacement of (i, j) by (`, j) is a good local

response. This contradicts that g is strict local-Nash. �

i

j

l

k

Figure 4.6: Situation where i is contained in two cycles.

It remains an open question whether any network that satisfies the conditions (i),

(ii), and (iii) of Theorem 4.4.1, is a Nash network for some orderly joint payoff function.

Notice that besides proper networks, not many network architectures satisfy those

conditions. By (ii), it follows that for each agent i who has two outgoing links, (i, j)
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and (i, k), there are no topagents active in the components gk−j and (by symmetry)

gj−k. This implies that these components cannot be proper, which in turn implies that

in each of these components, another agent exists who has (at least) two outgoing links,

and so on. In the following example, a strict local-Nash network is provided that is

not proper. Already observe how the network depicted in Figure 4.7 satisfies condition

(ii) by its cyclic structure; in view of agent 1, there are no topagents active in the

components gn−2 and g2−n, and by symmetry, the same argument applies to all other

odd-numbered agents.

Example 4.4.2. For even n and n ≥ 4, let g̃ be the following network architecture.

Let all agents be contained in one undirected cycle, where the directions of the links

are alternated. In Figure 4.7, network g̃ is depicted for n = 14.

2

3

n-1n

4

1

Figure 4.7: Example of network g̃.

For each i ∈ N , define πi(g) = 1 whenever g = g̃, and πi(g) = 0 otherwise. Since

network g̃ is the unique network for which each agent yields a payoff strictly higher

than 0, it is a strict local-Nash network.

Now we show that π is orderly.

DA is satisfied, since g̃ cannot be the union of two i-disjoint networks, and it is not

i-disjoint from any non-empty network.

Property NA is also satisfied, because of the following. For any network g where

a directed path of at least two links exists from k to i, it follows that πi(g + (k, i)) =

πi(g) = 0.

Since πi(g−ij) = πi(g
j
−i) = 0 for any network g and any i, j ∈ N , links are always

beneficial. Therefore, BF, BS, and BG are trivially satisfied. Further, since all links

are equally beneficial, property BT is also satisfied.

Observe that network g̃ satisfies the conditions (i), (ii), and (iii) of Theorem 4.4.1.

Therefore, and because π is orderly, this example confirms Theorem 4.4.1. ♦
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4.5 Property independence

In this section, we show the independence of the properties that we used in this chapter.

This is done by an exposition of examples of payoff functions, fulfilling all but one

property.

Theorem 4.5.1. The properties DA, NA, BT, BF, BG, and BS are independent

of each other.

Proof. We show that for each property a payoff function exists which does not satisfy

that property while it does satisfy all other properties.

(all but DA) The following payoff function satisfies all properties, except DA:

πi(g) = |Ni(g) \ {i}|2. (4.11)

Property DA is not satisfied, because for any two i-disjoint networks g and g′

we have |Ni(g) \ {i}|2 + |Ni(g
′) \ {i}|2 < |Ni(g ∪ g′) \ {i}|2. The properties NA

and BT are trivially satisfied and the others because πi(g−ij) ≥ πi(g
j
−i) for any

network g and any agent j.

(all but NA) The following payoff function satisfies all properties, except NA:

πi(g) = |Nd
i (g)|. (4.12)

Property NA is not satisfied, because πi(g + (k, i)) > πi(g) for any network g

where (k, i) 6∈ g, and where a directed path from k to i exists. Property DA is

clearly satisfied, and also the four properties that concern beneficiality, because

πi(g
j
−i) = 0 and πi(g−ij) = 1 for any network g and any agent j.

(all but BT) Let agent 1 be a special member of N , and let i ∈ N \{1}. The following

payoff function satisfies all properties, except BT:

πi(g) =

{
1 if 1 ∈ Nd

i (g) and 1 6∈ Ni(g − (1, i));

0 otherwise.
(4.13)

This payoff function does not satisfy BT, because in any network g1−i where

agent 1 is not a topagent, we have πi(g−i1) = 1, while πi(g−ij) = 0 for each

topagent j ∈ Car(g1−i) \ {1}. It can easily be verified that properties NA and

DA are satisfied. The remaining properties are also satisfied since πi(g
j
−i) = 0

and πi(g−ij) ≥ 0 for any network g and any agent j.
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(all but BF) Let agent 1 be a special member of N . Consider the following payoff

function:

πi(g) =

{
0 if Ni(g) = N, 1 6∈ Nd

i (g), |Nd
i (g)| = 1;

−|Nd
i (g)| otherwise.

(4.14)

Observe that πi(g−i) = 0 for any network g.

Property BF is not satisfied for i 6= 1, because of the following. Let i 6= 1 and let

g be a network that consists of one cycle containing all agents in N \{i}, and that

also consists of link (i, k) for some k ∈ N \ {i, j}. Further, let 1 be the agent who

is farthest away from i (so, (1, k) ∈ g). Then πi(g−ik) = 0 while πi(g−i1) = −1.

It can easily be verified that property DA is satisfied. Property NA is satisfied,

because if agent i adds link (j, i) to network g where a directed path from j to i

exists, then his payoff will decrease. Property BT is satisfied because only link

(1, i) can be beneficial, which is the case only if Ni(g−i1) = N , which implies that

1 is a topagent. By similar reasoning, properties BG and BS are satisfied.

(all but BG) The following payoff function satisfies all properties, except BG:

πi(g) =
∣∣Nd

i (g) ∩ T (g−i)
∣∣− ∣∣Nd

i (g) \ T (g−i)
∣∣, (4.15)

where T (g−i) is the set of topagents in g−i who do not have outgoing links.

This payoff function does not satisfy BG, because of the following example.

Consider network g = {(r, k), (k, i)}. Since k ∈ T (gk−i), we have πi(g−ik) = 1 and

πi(g
k
−i) = 0, i.e. (k, i) is beneficial in g. However, by adding link (k, r), we obtain

k 6∈ T
(
(g+(k, r))k−i

)
. Therefore πi

(
(g+(k, r))−ik

)
= −1 and πi

(
(g+(k, r))k−i

)
=

0, i.e. (k, i) is not beneficial in g + (k, r). Hence property BG is not satisfied.

Property DA is satisfied, because the sets Nd
i (g) and T (g) can be decomposed

into disjoint subsets w.r.t. i-disjoint subnetworks. Property NA is satisfied, be-

cause in any network g where a directed path exists from k to i, we have k 6∈ T (g),

and therefore the payoff does not increase when (k, i) is added. Property BT is

trivially satisfied since (k, i) can only be beneficial if k is a topagent in g−i. Fur-

thermore, a topagent k in g−i such that (k, i) is beneficial, has no outgoing links

in g−i (since k ∈ T (g−i)). If g is proper, and if i has an outgoing link to the

component gk−i, then it follows that k is the agent who is farthest away from i in

g. Hence BF is also satisfied. Property BS is satisfied because the deletion of a

spoke (k, r) in g does neither affect the set T (g−i) nor the set Nd
i (g).

(all but BS) The following payoff function satisfies all properties, except BS:

πi(g) =
∣∣Ki(g)

∣∣− ∣∣Nd
i (g)

∣∣, (4.16)
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where Ki(g) is the set of spokes that i views in g, i.e.

Ki(g) =
{

(k, r) : r ∈ Ni(g) and (k, r) is a spoke
}
.

Property BS is not satisfied, because by removing a spoke (k, r) in a network g,

the cardinality of Ki(g) may decrease such that πi(g−ij) ≥ πi(g
j
−i) and πi

(
(g −

(k, r))−ij
)
< πi

(
(g − (k, r))j−i

)
. Clearly, this payoff function satisfies NA and

DA. For the properties BT, BF, and BG, notice that the payoff πi(g−ij) only

depends on the number of spokes viewed in g−ij . Properties BT and BF are

satisfied, because of the following. Let k be an agent in a network g and let j be

a topagent in gk−i. Since i views at least as many spokes in g−ij as in g−ik, BT

and BF are satisfied. Property BG is satisfied because for any network g and

any agent j, the number
∣∣Ki(g−ij)

∣∣ cannot decrease by adding a link to g.

�

We already observed that DE implies BT and BF, and not vice versa. In the

following theorem, we show that the properties that are needed for Corollary 4.3.2,

which are NA, DA, DE, BS, and BG, are independent of each other as well.

Theorem 4.5.2. The properties DA, NA, DE, BG, and BS are independent of each

other.

Proof. By Theorem 4.5.1 we know that DA, NA, BG, and BS are independent of

each other. Therefore it remains to show that DA, NA, BG, and BS are independent

of DE.

Payoff function (4.7) in Example 4.2.3 does not satisfy DE, whereas it satisfies all

other properties. In the example it was shown that DA and NA are satisfied. The

other properties, BG and BS, are trivially satisfied since πi(g
j
−i) = 0 and πi(g−ij) = 1

for any g and j. Hence NA, DA, BG, and BS do not imply DE.

To show that DE does not imply DA, NA, BG, nor BS, consider the payoff

functions (4.11), (4.12), (4.15), and (4.16). They do not satisfy DA, NA, BG, and

BS respectively. However, it can easily be checked that these functions do satisfy DE.

We conclude that the properties DA, NA, DE, BG, and BS are independent of

each other. �

4.6 Payoff functions satisfying the properties

In this section, we analyze which payoff functions satisfy the framework of proper-

ties that we introduced in this chapter. First, we focus on B&G-1 functions (defined

by (2.2)). We prove that B&G-1 functions with owner-homogeneous link costs and

heterogeneous profits are orderly and also satisfy DE. Further, we prove that B&G-1

functions with heterogeneous link costs that satisfy a system of triangle inequalities,
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are orderly without necessarily satisfying DE. Then, we provide several examples of

payoff functions that satisfy all properties, even though they fall outside the class of

B&G-1 functions.

Recall from Section 2.2.2 that we may assume that vii = 0, because the transfor-

mation π′i(g) = πi(g) − πi(g−i) = πi(g) − vii does not have influence on the strategic

behavior of agent i.

In the next lemma, we prove that all B&G-1 functions satisfy four properties.

Lemma 4.6.1. Let πi be a B&G-1 function. Then πi satisfies DA, NA, BG, and

BS.

Proof.

(DA) For each two i-disjoint networks g and g′ it holds that Ni(g) ∩ Ni(g
′) = {i}

and Nd
i (g) ∩ Nd

i (g′) = ∅. Since we assumed that vii = 0, it follows that πi(g + g′) =

πi(g) + πi(g
′). Therefore πi satisfies DA.

(NA) If a directed path exists from k to i in network g where link (k, i) does not

exist, then Ni(g) = Ni(g + (k, i)), and Nd
i (g) ⊂ Nd

i (g + (k, i)). Hence property NA is

satisfied.

(BG) Let g be a network where (j, i) is beneficial. Since Ni(g−ij) ⊆ Ni

(
(g+(k, r))−ij

)
and Nd

i (g−ij) = Nd
i

(
(g + (k, r))−ij

)
= 1, property BG is satisfied.

(BS) Let g be a network that contains a spoke (k, r). Let (j, i) be beneficial in g. Since

Ni(g−ij) = Ni

(
(g − (k, r))−ij

)
and Nd

i (g−ij) = Nd
i

(
(g − (k, r))−ij

)
= 1, link (j, i) is

also beneficial in g − (k, r). Hence BS is satisfied. �

In the next result, we show that B&G-1 functions with owner-homogeneous link

costs satisfy all properties, and therefore imply the existence of global-Nash networks

(by Corollary 4.3.2). This result is also proved in Theorems 2.2.2 and 2.2.8.

Theorem 4.6.2. Let π be a joint B&G-1 function with owner-homogeneous link costs,

i.e. cij = ci for all i, j ∈ N . Then π satisfies DA, NA, DE, BG, and BS, i.e.

global-Nash networks exist.

Proof. By Lemma 4.6.1 it follows that π satisfies DA, NA, BG, and BS.

Let g be a network where (j, i) 6∈ g, (k, i) 6∈ g, and where a directed path exists from

k to j in g−i. Then Ni(g+(j, i)) ⊇ Ni(g+(k, i)) and
∣∣Nd

i (g+(j, i))
∣∣ =

∣∣Nd
i (g+(k, i))

∣∣.
Hence, property DE is satisfied. �

The existence of local-Nash networks is proved in Theorem 4.3.1 for orderly payoff

functions. Notice that these payoff functions satisfy BT and BF instead of DE (which

implies both of them). In the next theorem we provide conditions for joint B&G-1

functions with heterogeneous link costs such that these functions are orderly.
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Theorem 4.6.3. Let π be a joint B&G-1 function with heterogeneous link costs and

profits. If

cij ≤ vij +min(vik, cik), for all i, j, k ∈ N (4.17)

then π is orderly, i.e. local-Nash networks exist.

Proof. By Lemma 4.6.1, the properties DA, NA, BG, and BS are satisfied. It remains

to prove that πi satisfies BT and BF:

(BT) Let link (k, i) be beneficial in g. Then
∑

r∈Ni(g−ik)
vir ≥ cik. If a topagent

j exists in the component gk−i, then either k = j or a directed path from k to j

exists. In the first case BT is trivially satisfied. In the second case, it follows that

Ni(g−ij) ⊇ Ni(g−ik) ∪ {j}. Since cij ≤ vij + cik we have

πi(g−ik) =
( ∑
r∈Ni(g−ik)

vir

)
− cik

≤
( ∑
r∈Ni(g−ik)

vir

)
− (cij − vij)

≤
( ∑
r∈Ni(g−ij)

vir

)
− cij

= πi(g−ij).

Hence BT is satisfied by πi.

(BF) Let gk−i be a proper component of g where i has an outgoing link and let link

(k, i) be beneficial in g. Let j be a topagent in this component who is farthest away

from i. If k = j then BF is trivially satisfied. Otherwise a path from k to j exists.

Therefore both agents j and k are contained in Ni(g−ij). Since cij ≤ vij +vik it follows

that πi(g−ij) ≥ vij + vik − cij ≥ 0. Hence BF is satisfied. �

Observe that both local- and global-Nash networks also exist for B&G-1 functions

under weaker conditions than (4.17). This is illustrated by Proposition 2.2.10. Notice

that a B&G-1 function that fulfills (2.9) and (2.10) does not necessarily satisfy BF. In

Chapter 6 we return to this subject more extensively: we provide a full characterization

of B&G-1 functions that satisfy the properties of our framework, and hence imply the

existence of local- and global-Nash networks.

Our framework of properties is also satisfied by non-B&G-1 payoff functions. Con-

sider the following examples:

πi(g) = |Nd
i (g) ∩ T (g−i)|, (4.18)

πi(g) =
∣∣Ki(g) \ {(j, i) : j ∈ Nd

i (g)}
∣∣, (4.19)

πi(g) = |C(g) ∩Ni(g)| − |Nd
i (g)|, (4.20)

where C(g) is the set of agents that are contained in a cycle in g, and where T (g) and

Ki(g) are respectively defined as the set of topagents in g who do not have outgoing
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links, and the set of spokes in g that i observes. These payoff functions are orderly

and also satisfy DE. Payoff function (4.7) in Example 4.2.3, which is also studied in

the proof of Theorem 4.5.2, is a non-B&G-1 payoff function that is orderly whereas it

does not satisfy DE.

These payoff functions extend the class of B&G-1 functions in the following way.

They do not only consider which agents are (directly) observed, i.e. which agents are

contained in the sets Ni(g) and Nd
i (g). They also take other aspects of the network

architecture into account. In the given examples, the sets T (g−i), Ki(g), and C(g)

illustrate this.

Bala and Goyal (2000a) study a class of payoff functions that generalizes B&G-1

functions with homogeneous links costs and homogeneous profits:

πi(g) = φ
(
|Ni(g)|, |Nd

i (g)|
)

∀i ∈ N, (4.21)

where φ(x, y) is strictly increasing in x and strictly decreasing in y. Observe that only

the number of observed agents and the number of own links determine the payoff. In

other words, the observed agents and the links are still regarded as homogeneous. It

can be easily verified that these functions satisfy all proposed properties, except DA.

It remains an open question whether the existence of Nash networks can be proved

for payoff functions that allow for heterogeneity among observed agents and link costs,

without using a linear type of property, such as DA.

4.7 Concluding remarks

In conclusion, we studied the existence of Nash networks in this chapter for a general

class of payoff functions. The local oriented payoff properties that we introduced pro-

vide insights in the specific underlying model (in this case, the one-way flow model):

which properties are needed to prove the existence of Nash networks, and how each

property affects the architecture of those networks. For instance, by NA it follows

that minimal networks are preferred over non-minimal networks.

The payoff functions that satisfy the framework of properties include B&G-1 func-

tions with owner-homogeneous link costs and heterogeneous profits, and non-B&G-1

functions such as (4.18), (4.19), and (4.20). As far as we know, there is no natural

class of non-B&G-1 functions that satisfies the framework of properties.

Non-linear payoff functions such as (4.21) do not satisfy DA. For further research

it is worthwhile to develop a framework of payoff properties that also cover non-linear

payoff functions.

In Chapter 7, we analyze the two-way flow model in the same way; we introduce a

framework of payoff properties which are inspired by the two-way flow model, and which

provide insights in the two-way flow model. In Chapter 9 we discuss both frameworks

and relate them to models with information decay and imperfectly reliable links.



Chapter 5

Dynamic network formation

game

In this chapter, we study a dynamic game of network formation based on the model

studied in the previous chapter.

The game starts with some initial network. Then one agent, who is selected at

random, plays a local action, i.e. he can modify the network by adding, deleting, or

replacing a link, but he can also pass. Then again, one agent is selected to play a local

action in the obtained network. This process continues, until a network is reached that

no one wants to modify. This network yields a payoff for each agent. The goal of each

agent is to obtain a payoff as high as possible.

Our approach of local dynamics reflects a local oriented strategic behavior of the

agents. By playing local improvements, agents improve their current situation by

a minimal modification, which is a realistic aspect in many applications of network

formation. Another advantage of our local approach is that a best local response is

much easier to find in terms of computational complexity than a best global response

(see Theorem 3.2.1 and Proposition 4.1.1).

In this chapter we analyze how this game is played. We want to know whether

the play ends. In other words, does the play lead to a network that no one wants to

modify? For this purpose, we propose an iterative procedure of local actions.

This procedure follows the rules of the game as described above. Thus, starting

with some initial network, at the beginning of each stage, one agent is selected to

modify the network. Then, one of his local actions is selected at random and being

played. We allow agents to play more actions than best local responses. Also actions

are allowed where the obtained payoff does not decrease. We call these actions good

local responses. These actions can be seen as ad-hoc improvements, which are realistic

in applications of network formation, especially with respect to large networks. All

good local responses (except for some specific payoff equivalent local responses) have

71
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a positive fixed probability to be selected, that only depends on the network.

We say that our procedure terminates when it reaches a network that no agent

wants to modify. We prove that if all payoff properties of chapter 4 (introduced in

Sections 4.2 and 4.3) are satisfied, then the procedure terminates in a finite number of

iterations. Moreover, the networks at which the procedure terminates, are global-Nash

networks.

Our procedure resembles the one described by Bala and Goyal (2000a). However,

they examine only global actions, and multiple agents may play simultaneously during

each stage of their model. In the last section of this chapter we show that our results

can be generalized to the case where agents may play simultaneously. Watts (2001) and

Jackson and Watts (2002) also study dynamic models of network formation, but their

models are based on the bilateral model of network formation introduced by Jackson

and Wolinsky (1996).

This chapter is outlined as follows. In Section 5.1 we formally describe the dynamic

game, and provide examples of how it can be played. Then, in Section 5.2 we propose

the procedure and prove that it always terminates at a global-Nash network whenever

all payoff properties are satisfied. Finally, in Section 5.3 we provide several concluding

remarks.

This chapter is mainly based on Derks et al. (2008b).

5.1 Game description

Given a set of agents N and a joint payoff function π, a network formation game

proceeds in stages 1, 2, 3, . . .. Let gt be the network at the beginning of stage t, which

is known to all agents. The initial network g1 can be any network in G. Then, at stage

t according to a probability device, an agent, say i, is selected. We assume that at

each stage all agents have positive (stage independent) probabilities of being selected.

Now, stage t proceeds by allowing one agent to modify the network gt by playing a

local action. Thus, a new network gt+1 results, which marks the start of stage t + 1.

The game ends with network g∗ if no agent wants to adjust his links. In that case,

each agent i receives payoff πi(g∗).
Recall that a local action is one of the four following types: a pass, an addition, a

deletion, and a replacement. Further, recall that a local action of agent i in stage t

where the obtained network is gt+1, is called a best local response if

πi
(
gt+1) ≥ πi

(
(gt)−i + {(j, i) : j ∈ T}

)
,

for all local actions T ; a good local response if

πi(gt+1) ≥ πi(gt),

and, in addition, a neutral local response if

πi(gt+1) = πi(gt).
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The following example with three agents illustrates how the network formation game

is played.

Example 5.1.1. Let the set of agents be N = {1, 2, 3} and for each agent i ∈ N , let

πi be a B&G-1 function as described in (2.2), where vij = 2 and cij = 1 for all agents

j.

Stage t Network gt π1(gt) π2(gt) π3(gt) Selected

agent

Local action

1 g1 = ∅ 0 0 0 1 add (3, 1)

2 g2 = {(3, 1)} 1 0 0 3 add (1, 3)

3 g3 = {(3, 1), (1, 3)} 1 0 1 2 add (3, 2)

4 g4 = {(3, 1), (1, 3), (3, 2)} 1 3 1 1 replace (3, 1) with (2, 1)

5 g5 = {(2, 1), (1, 3), (3, 2)} 3 3 3 All agents pass.

Table 5.1: Play of the game in Example 5.1.1.

Let the initial network in this example, g1, be the empty network. The play of the

game is shown in Table 5.1. In the second last column the selected agent is given,

but the agents do not know the order in which they are chosen in advance. The

corresponding networks are depicted in Figure 5.1. Notice that all played local actions

in this example are best local responses. Furthermore, the final network, g5, is strict

local- and global-Nash. ♦

1

2 3
Network g1

1

2 3
Network g2

1

2 3
Network g3

1

2 3
Network g4

1

2 3
Network g5

Figure 5.1: The networks obtained in Example 5.1.1.

In this chapter we study the play of this game. We say that the play terminates

at a specific network g∗ if this network is reached, and furthermore, if no agent exists

who wants to play a local action that modifies g∗. Clearly, the play described in Exam-

ple 5.1.1 has terminated at network g5. However, by the next example we will see that

termination is not evident. Here, we will revisit the game described in Example 2.2.9,

for which Nash networks do not exist.

Example 5.1.2. For this game, let N = {1, 2, 3, 4}. Let π be a joint B&G-1 function.

The profits are given by vij = 1 for all i, j with i 6= j and vii = 0 for all i. Further, the

numbers next to the links in Figure 5.2 indicate the costs of these links. Here, ε is a

strictly positive number which can be chosen arbitrarily close to 0.

The costs of the links that are not depicted in this figure are the following:
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1

2

34

1-

3- 3-

2-

ε

ε

ε

ε

Figure 5.2: The link costs.

∗ links directed to agent 1 have cost 1 + ε,

∗ links directed to agent 2 have cost 2 + ε,

∗ links directed to agents 3 and 4 have cost 3 + ε,

Suppose that the play reaches the network gt depicted in Figure 5.3 at a certain

stage t. The play of the game as from stage t is given in Table 5.2 and the obtained

networks are depicted in Figure 5.3. For the sake of convenience, we skip the possible

intermediate stages in which agents pass.

Stage Network π1 π2 π3 π4 Agent who can improve Local action

t gt 1 + ε ε ε ε− 1 4 delete (2, 4)

t+1 gt+1 ε ε ε 0 1 add (3, 1)

t+2 gt+2 1 1 + ε ε 0 4 add (2, 4)

t+3 gt+3 1 1 + ε ε ε 1 delete (3, 1)

t+4 gt

Table 5.2: Play of the game in Example 5.1.2.

Since agents 1, 2, and 3 play optimally in network gt, agent 4 is the only one who

wants to modify the network by deleting (2, 4), obtaining network gt+1. In this network,

agent 1 is the only one who can improve, namely by adding (3, 1). In the obtained

network gt+2, agent 4 can improve by adding (2, 4) such that network gt+3 is obtained.

Next, agent 1 can improve by deleting (3, 1). The obtained network gt+4 is equal to

gt. Hence, the dynamic game cycles through the networks depicted in Figure 5.3. ♦

1

3

2

4

1

2

4

1

3

2

4

1

2

43 3

gt gt+1 gt+2 gt+3

Figure 5.3: The networks obtained in Example 5.1.2.



5.2. PROCEDURE 75

5.2 Procedure

In this section we study how the game is played by means of a dynamic procedure. We

prove that this procedure terminates at a proper global-Nash network, whenever all

properties of the previous chapter are satisfied. Here, we make use of the results from

chapter 4, in particular the proof of Theorem 4.3.1. The procedure that we propose is

completely in line with those results.

Following the rules of the game, the procedure starts with an arbitrary initial net-

work, and per stage, one agent is selected at random. One of his good local responses

is selected at random, and being played. These steps are repeated. Formally, we define

the procedure based on the following assumptions.

A-1 Let the initial network be a network that is arbitrarily chosen from G.

A-2 At the beginning of each stage, an agent is selected at random, where each agent

has a positive stage independent probability to be selected.

A-3 At each stage, the agent who is selected plays a good local response that satisfies

the following three assumptions.

A-3a A neutral addition is not allowed.

A-3b A neutral deletion of link (j, i) in network g is only allowed whenever

Ni(g − (j, i)) = Ni(g).

A-3c A neutral replacement of (k, i) by (j, i) in network g is only allowed when

a directed path exists from k to j in network g−i.

One of his good local response is selected at random, where all allowed good local

responses have a positive probability to be selected that only depends on the

network.

We say that the procedure terminates at a network g if this network is reached, and

furthermore, if a pass is the only allowed action for each agent i with respect to g.

Unfortunately, assumptions A-3a to A-3c are restrictive to some extent. It would

be more intuitive that agents have more options to experiment with, for instance by

adding links where their payoffs do no immediately increase. However, we need those

assumptions in order to prevent situations like the following one. Consider a game

where an agent i is present, such that πi(g) = 0 for any network g. When the procedure

reaches some local-Nash network, this agent may perform randomly chosen neutral local

responses, such that the obtained network is no longer local-Nash. With these kind of

payoff functions, it is hard (if not impossible) to design a more general procedure that

terminates at a local-Nash network.

In the following lemma, we show that the procedure defined by A-1 to A-3 terminates

whenever a proper local-Nash network is reached.
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Lemma 5.2.1. Let the dynamic procedure be defined by assumptions A-1 to A-3. If this

procedure reaches a proper local-Nash network, then it also terminates at this network.

Proof. Let g be a proper local-Nash network that is reached by the dynamic procedure.

Since g is local-Nash, it can only be modified by neutral responses. Let i be an agent

who can apply a neutral response to g. We know by assumption A-3a that this action

cannot be a neutral addition.

Suppose that this action is a deletion. Since g is proper, each deletion strictly reduces

the set of observed agents. By assumption A-3b, such deletions are not allowed. Hence

we conclude that this action cannot be a deletion.

Suppose that this action is a replacement. By assumption A-3c, a neutral replace-

ment of (k, i) by (j, i) is only allowed when a directed path exists from k to j that does

not visit agent i. In that case, agent k has two outgoing links: (k, i) and a link on the

path from k to j. This contradicts that g is proper.

Hence we conclude that the only neutral response that can be applied to g is a pass.

Therefore, the procedure terminates at network g. �

We prove that the procedure reaches a proper local-Nash network with probability 1.

First, we show that a finite sequence of good local responses exists that can be applied

iteratively to any arbitrary network such that the obtained network is local-Nash. This

sequence starts with actions such that the initial network is reshaped to a proper and

beneficial network. From there, we reuse the result of the proof of Theorem 4.3.1 which

states that if a proper and beneficial network is not local-Nash, then another proper

and beneficial network exists with a higher connection number. Iteratively using this

result, we obtain a network with a maximal connection number, which implies that

this network is proper local-Nash.

Lemma 5.2.2. Let π satisfy DA, NA, and DE. Then, for any network in G, there

exists a finite sequence of good local responses that leads to a proper and beneficial

network.

Proof. Let g be a network in G. In two steps, we provide a sequence of good local

responses that starts at g, and that leads to a proper and beneficial network.

Step 1. First we make g proper by applying good local responses. If g is already

proper, then continue to step 2. Otherwise an agent i exists in g who has at least two

outgoing links, say (i, j) and (i, k) (see Figure 5.4).

Two cases are distinguished:

A: There is a directed path from i to an agent ` with outdegree 0, starting with link

(i, k). Property DE implies that the link (i, j) may be replaced by (`, j). This

action decreases the total outdegree of the agents with multiple outgoing links.



5.2. PROCEDURE 77

j

i
k

Figure 5.4: An agent with two outgoing links.

B: None of the directed paths starting with link (i, k) end at an agent with outdegree

0. Either there is a cycle C containing (i, k), or there is a directed path starting

with link (i, k) and ending at an agent ` on a cycle. In the latter case we may

apply property DE and replace link (i, j) with (`, j). It is therefore no loss of

generality to assume a cycle containing (i, k).

We distinguish four subcases:

1: Agent j is on cycle C. Then a directed path exists from i to j and hence the

link (i, j) can be deleted by NA.

2: There is a directed path from i to an agent with outdegree 0, and starting

with link (i, j). Case A addresses this situation.

3: There is a cycle C ′ containing (i, j). Going in the opposite direction over C ′,
let ` be the last agent on this cycle who is also on cycle C (see Figure 5.5).

j

i

k

l
C’

C

Figure 5.5: Situation of case 3.

Using property DE we may replace link (i, k) with link (`, k), so that we

can assume that both cycles C and C ′ have only agent i in common. This

situation is depicted in Figure 5.6.

Let agent ` be such that (`, i) is on cycle C (` may be agent k). Now,

replace (i, j) with (`, j). This is a good local response by DE since there is

a directed path from i to `, without visiting j. After this replacement, the

link (`, i) can be deleted by NA since there is a cycle in which i, k, `, j are

visited in this order, and hence (`, i) is a spoke.

4: There is a directed path starting with link (i, j) and ending at an agent ` on a

cycle. Then agent ` is not on the cycle through (i, k). (Otherwise, we would
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j

i

k

l

C’

C

Figure 5.6: Situation of case 3 continued.

have obtained a cycle containing (i, j), and this is already taken care of in

case 3.) Using property DE, we may replace link (i, k) with link (`, k), and

by this action we arrive at the situation treated in case 3.

As long as there are agents with outdegree greater than 1, g is not proper, and hence

this step can be repeated. Each time it is repeated, the outdegree of one agent is

reduced without changing the outdegrees of the other agents. Therefore, after a finite

number of repetitions we obtain a proper network.

Step 2. Let g′ be the proper network that results from step 1. If g′ is not beneficial,

then a non-beneficial link (j, i) exists in g′. Since g′ is proper and since DA is satisfied,

by Lemma 4.2.1 we know that (j, i) is also not profitable, and therefore the deletion

of it is a good local response. Obviously, g′ remains proper after this deletion. Such

deletions can be applied repeatedly until we obtain a proper and beneficial network g′′.
�

Observe that also for a local-Nash network that is not proper, there exists a sequence

that leads to a proper and beneficial network. The next lemma shows that for any

proper and beneficial network, there exists a finite sequence of good local responses

that can be applied iteratively such that it leads to a proper local-Nash network.

Lemma 5.2.3. Let π be an orderly joint payoff function that satisfies DE. Let g be

a proper and beneficial network. There exists a finite sequence of good local responses

that leads to a proper local-Nash network.

Proof. Suppose that g is not local-Nash. Since g is proper and beneficial, we know from

the proof of Theorem 4.3.1 that a network can be obtained with a higher connection

number. We show that we can obtain this network by applying good local reponses.

Consider the networks g′, g′′ and g′′′ as defined in (4.8), (4.9), and (4.10). Network

g′ is obtained from g by a strictly improving addition, which is trivially a good local

response. Network g′′ is obtained from g′ by a replacement of (j, k) by (r, k) where

a directed path from j to r exists in g. By DE, this is also a good local response.

Finally, network g′′′ is obtained from g′′ by a deletion of spoke (r, s) which is a good

local response by NA. Observe that g′′′ is proper and benefical. Therefore, if g′′′ is
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not local-Nash, we can repeat these good local responses until we obtain a local-Nash

network. At each iteration, the connection number strictly increases. Since this number

is bounded by n(n−1), we obtain a local-Nash network in a finite number of iterations.

�

Combining Lemma’s 5.2.2 and 5.2.3 we obtain a sequence of networks that starts

with an arbitrary initial network and ends with a proper local-Nash network. In the

next theorem we show that our procedure always terminates at a local-Nash network.

Theorem 5.2.4. Let π be an orderly joint payoff function that satisfies DE, and let

the dynamic procedure be defined by assumptions A-1 to A-3. Then this procedure

terminates at a proper local-Nash network with probability 1.

Proof. First we prove that the procedure reaches a local-Nash network with probability

1, and then we know by Lemma 5.2.1 that it also terminates at this network.

By Lemma’s 5.2.2 and 5.2.3 we know that from an arbitrary network in G a finite

sequence of good local responses exists, such that the obtained network is proper and

local-Nash. It is easily verified that these good local responses satisfy assumptions

A-3a to A-3c:

∗ the only additions in this sequence are strictly improving ones;

∗ each deletion is either validated as a good local response by NA (and hence it

satisfies assumption A-3b), or it is a deletion of a non-beneficial link in a proper

network which is a strictly improving deletion by DA;

∗ all replacements in this sequence are validated as good local responses by DE

and hence they satisfy assumption A-3c.

Hence, any sequence that is constructed in the proofs of Lemma’s 5.2.2 and 5.2.3

satisfies the assumptions A-1 to A-3.

By the construction of such a sequence, we know that each network in G appears at

most once in this sequence. Therefore, we conclude that the length of this sequence is

upperbounded by M = 2n(n−1), i.e. the finite number of networks in G.

At any stage, each agent has a strictly positive probability to be selected (assumption

A-2), and each allowed good local response has a strictly positive probability to be

selected (assumption A-3). Therefore, the probability that such a sequence will be

played is lowerbounded by a strictly positive probability ε. The probability that the

dynamic procedure does not reach a local-Nash network after M steps is lower than

1−ε. If it does not reach a local-Nash network afterM steps, then from the last network,

another sequence exists that leads to a local-Nash network. Hence, the probability that

the dynamic procedure does not reach a local-Nash network after 2M steps is lower

than (1− ε)2, and after kM steps lower than (1− ε)k, with k being a strictly positive

natural number. This probability converges to 0 as k becomes larger. Therefore, the

procedure reaches a proper local-Nash network with probability 1.
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By Lemma 5.2.1 we know that this procedure also terminates at this network. �

Combining this result with Theorem 4.2.2, saying that each proper local-Nash net-

work is also global-Nash, we obtain the following corollary.

Corollary 5.2.5. Let π be an orderly joint payoff function that satisfies DE, and

let the dynamic procedure be defined by assumptions A-1 to A-3. Then this procedure

terminates at a proper global-Nash network with probability 1.

5.3 Concluding remarks

In our procedure, agents play good local actions, which are realistic in the sense that

individuals link up with others in an ad-hoc way, rather than determining the best thing

to do. They can also experiment by playing certain neutral local actions. However, if

we allow agents to play all types of neutral local actions, then our procedure does not

necessarily terminate. It would be interesting to study which classes of payoff functions

imply the termination of our procedure without restrictions on neutral local actions

(A-3a to A-3c).

In our procedure, agents play in a sequential order (assumption A-2). Bala and

Goyal (2000a) consider a more general order of play, where at each stage, each agent has

a positive probability to be selected. This implies that agents can play simultaneously

during each stage. Our restriction to a purely sequential order of play is not essential

in order to prove termination. Consider the follow alternative assumption:

A-2’ At the beginning of each stage, each agent has a positive, stage independent

probability to be selected.

It can be proved as follows that the procedure defined by A-1, A-2’, and A-3 (applied

to each selected agent), terminates at a proper local-Nash network with probability 1.

For this purpose, the proof of Theorem 5.2.4 can be used, except for the first sentence

of the second last paragraph, which should be replaced by: “At any stage and for each

agent i, there is a strictly positive probability that i is selected while all others are not

(assumption A-2’), and each of his allowed good local responses has a strictly positive

probability to be selected (assumption A-3).”

The dynamics proposed by Bala and Goyal (2000a) is based on global instead of local

actions. Observe that each good local response is also a good global response. So, if we

let agents play good global responses, where each good global response has a positive

probability to be selected, then our procedure always reaches a local-Nash network

that is also global-Nash. When we restrict agents to play neutral global responses only

if they are neutral local actions that satisfy A-3a to A-3c, then it is easily verified that

our procedure also terminates.

However, it is not known whether our procedure also terminates if agents have to

play best global responses. This would be interesting to examine.



Chapter 6

Payoff properties in the

one-way flow model

In this chapter, we examine the framework of payoff properties that is used in Chapters

4 and 5, and relate it to the one-way flow model studied in Chapter 2.

In section 4.6 we already showed that B&G-1 functions with owner-homogeneous,

non-negative link costs and heterogeneous, non-negative profits satisfy all properties,

and therefore imply the existence of local- and global-Nash networks. Furthermore,

we showed that B&G-1 functions with heterogeneous link costs, that satisfy certain

triangle inequality conditions, satisfy all properties except DE. For those functions, we

know that local-Nash networks exist.

In this chapter, we fully characterize the set of B&G-1 payoff functions that satisfy

all properties. Here, we consider the largest class of B&G-1 functions as possible, i.e.

with heterogeneous link costs and profits, and without non-negativity constraints. We

show that the class of orderly B&G-1 functions extends the class of B&G-1 functions

defined by the triangle inequality conditions of Theorem 4.6.3. Further, we show that

in the context of B&G-1 functions, property DE is equivalent with owner-homogeneous

link costs and non-negative profits.

This chapter is outlined as follows. In Section 6.1 we provide notations. Then,

in Section 6.2 we provide a full characterization of B&G-1 functions that satisfy the

properties that define orderliness. Finally, in Section 6.3 we examine property DE in

the context of B&G-1 functions.

This chapter is based on Derks and Tennekes (2007).

81
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6.1 Notations

In this chapter we denote a B&G-1 function as

πi(g) = vi
(
Ni(g)

)
− ci

(
Nd

i (g)
)
, (6.1)

where vi(S) =
∑

j∈S vij and ci(S) =
∑

j∈S cij are shorthand notations for the profits

respectively the link costs. Profits and link costs may be negative in this chapter.

Recall from Sections 2.2.2 and 4.6 that we may assume that vii = 0, because the

transformation π′i(g) = πi(g)− vii does not have influence on the strategic behavior of

agent i. Therefore, πi(g−i) = 0 for all networks g.

6.2 Characterization

In this section, we provide necessary and sufficient conditions for B&G-1 functions for

being orderly.

Notice that a link (j, i) is beneficial if and only if cij ≤ vi(S), where S is the set of

agents that i observes by using (j, i).

First of all, it is clear that all B&G-1 functions satisfy DA and BS (see Lemma 4.6.1).

It is also clear that property NA is satisfied by πi if and only if cij ≥ 0 for all j ∈ N .

We will refer to this condition as property NNC:

NNC (short for non-negative costs) cij ≥ 0 for all j ∈ N.

Property BG is satisfied if vij ≥ 0 for all j ∈ N . Indeed, if g′ = g+ (k, r), then the

set of agents that agent i observes in (g′)−ij is a superset of the set of agents that i

observes in g−ij . It follows that if all profits are non-negative, then (i, j) is beneficial

in g′ whenever it is beneficial in g. However, the following example shows that the

reverse does not hold, i.e. BG does not imply non-negativity of the profits.

i

j

k

l1000

-1

-1

1
3

3

Figure 6.1: Network with some negative profits.

Example 6.2.1. LetN = {i, j, k, `}, and let πi be a B&G-1 function. In Figure 6.1, the

numbers next to the nodes are the profits for agent i: vij = 1000 and vik = vi` = −1.

The numbers next to the links are the link costs: cij = 1 and cik = ci` = 3.
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Obviously, link (j, i) is beneficial in any network on N . Links (k, i) and (`, i) are

only beneficial in networks on N where j is observed by k and ` respectively. In these

networks, the beneficiality of (k, i) respectively (`, i) is guaranteed when adding other

links. Therefore, we conclude that πi satisfies BG while some profits are negative. ♦

The following lemma provides a full characterization of property BG with respect

to B&G-1 payoff functions.

Lemma 6.2.2. Let πi be a B&G-1 function. Then πi satisfies BG if and only if the

following property holds:

PBG If cij ≤ vi(S) for agent set S ⊂ N and agent j ∈ S, then cij ≤ vi(S
′) for all

S′ ⊃ S.

Proof. Suppose that PBG does not hold. Then sets S ⊂ N and S′ ⊃ S exist with j ∈ S
such that cij ≤ vi(S) and cij > vi(S

′). Let T = S′ \ S. Consider a network g where

all agents in S form a component with j being a topagent, and all agents in T form a

component where agent k is a topagent. Then (j, i) is beneficial in g. However, in the

network g+ (k, j), we have πi
(
(g+ (k, j))−ij

)
= vi(S) + vi(T )− cij = vi(S

′)− cij < 0.

Therefore, (j, i) is not beneficial in g + (k, j). Hence BG is not satisfied.

Now suppose that BG is not satisfied. Then a network g exists that does not contain

link (k, r) where πi(g−ij) ≥ 0 and πi
(
(g+(k, r))−ij

)
< 0. Let S be the set of agents that

i observes in g−ij and S′ be the set of agents that i observes in network (g+ (k, r))−ij .
Clearly S′ ⊇ S. Since πi(g−ij) 6= πi

(
(g + (k, r))−ij

)
, it follows that S′ 6= S and hence

that S′ ⊃ S. Since πi(g−ij) = vi(S)− cij ≥ 0 and πi
(
(g+(k, r))−ij

)
= vi(S

′)− cij < 0,

it follows that PBG does not hold. �

For the remaining properties BT and BF we have the following results.

Lemma 6.2.3. Let πi be a B&G-1 function. Then πi satisfies BT if and only if the

following property holds:

PBT If cij ≤ vi(S) for agent set S ⊆ N and agent j ∈ S, then cij ≥ cik− vi(T ) for

all T ⊆ N \ S, k ∈ T .

Proof. Suppose that PBT does not hold. Then sets S ⊆ N and T ⊆ N \ S exist with

j ∈ S and k ∈ T such that cij ≤ vi(S) and cij < cik − vi(T ). Consider the network

depicted in Figure 6.2, where j observes S, and where k is a unique topagent. Since

cij ≤ vi(S), link (j, i) is beneficial in this network, i.e. πi(g−ij) = v(S) − cij ≥ 0.

Furthermore, we have

πi(g−ij) = v(S)− cij
> v(S)− cik + vi(T )

= v(S ∪ T )− cik
= πi(g−ik).
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Since k is the unique topagent in gj−i, we have shown that BT is not satisfied.

ji

k

T
S

Figure 6.2: Situation where k is the unique topagent in gj−i.

Now suppose that BT is not satisfied. Then a network g exists where (j, i) is

beneficial and where a topagent exists in gj−i such that for each topagent k in gj−i, we

have πi(g−ik) < πi(g−ij). Let S = Ni(g−ij) be the set of agents that i observes via

(j, i). Since (j, i) is beneficial, we have cij ≤ vi(S). Let T be the set of all other agents

in component gj−i. Clearly, T 6= ∅, because otherwise j is a topagent and hence BT is

satisfied. Take a topagent k ∈ T . Clearly S ∪ T = Ni(g−ik). We have

0 > πi(g−ik) − πi(g−ij)
= vi(S ∪ T )− cik − (vi(S)− cij)
= vi(T )− cik + cij .

Hence, it follows that cij < cik − vi(T ). Therefore PBT does not hold. �

Lemma 6.2.4. Let πi be a B&G-1 function. Then πi satisfies BF if and only if the

following property holds:

PBF If cij ≤ vi(S) for agent set S ⊆ N and agent j ∈ S, then cik ≤ vi(S
′) for all

S′ ⊇ S, k ∈ S′ \ {j}

Proof. Suppose that PBF does not hold. Then sets S and S′ ⊇ S and agents j ∈ S
and k ∈ S′ \ {j} exist where cij ≤ vi(S) and where cik > vi(S

′). Consider a network

g where i observes all agents in S in g−ij , where gj−i is proper, and where (i, j) ∈ g.

Further, let k be a topagent in gj−i who is farthest away from i. Let i observe all agents

in S′ in g−ik. Link (j, i) is beneficial because cij ≤ vi(S) and link (k, i) is not beneficial

because cik > vi(S
′). Therefore, BF is not satisfied.

Now suppose that BF is not satisfied. Then a network g exists that contains a

proper component gj−i where i is active, link (j, i) is beneficial, k is the farthest away

from i, and where link (k, i) is not beneficial. Let S′ be the set of agents in gj−i and

let S ⊆ S′ be the set of agents that j observes in this component. Since (j, i) is

beneficial it follows that cij ≤ vi(S). Agent k is a topagent, because this component is

proper. Therefore πi(g−ik) = vi(S
′)− cik. Since (k, i) is not beneficial, it follows that

cik > vi(S
′). Therefore, property PBF does not hold. �
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Observe that properties PBG and PBF exhibit similarities. In the following theo-

rem we show that PBF implies PBG.

Lemma 6.2.5. In the class of B&G-1 functions, property PBF implies PBG.

Proof. Let πi be a B&G-1 function that satisfies PBF. Let S ⊆ N with j ∈ S. If

cij ≤ vi(S) then according to PBF we have cik ≤ vi(S
′) for each superset S′ ⊇ S

and each agent k ∈ S′ \ S. By applying PBF to the latter inequality, with the roles

of j and k interchanged, we obtain cij ≤ vi(S
′). Therefore we conclude that property

PBG holds. �

To summarize our results thus far, we know that properties DA and BS are satisfied

by all B&G-1 functions, property NA requires that link costs are non-negative (NNC),

and we know that PBF implies PBG. Therefore we obtain the following theorem.

Theorem 6.2.6. Let πi be a B&G-1 function. Then πi is orderly if and only if

(NNC) cij ≥ 0 ∀j ∈ N , and

if cij ≤ vi(S) for agent set S ⊆ N and agent j ∈ S then

(PBT) cij ≥ cik − vi(T ) ∀T ⊆ N \ S, k ∈ T , and

(PBF) cik ≤ vi(S′) ∀S′ ⊇ S, k ∈ S′ \ {j}

By Theorem 4.3.1, where the existence of local-Nash networks for orderly joint payoff

functions is proved, we obtain the following result.

Corollary 6.2.7. For joint B&G-1 functions that satisfy NNC, PBT, and PBF,

local-Nash networks exist.

Observe that these conditions are weaker (i.e. they are satisfied by more B&G-1

functions) than the triangle conditions provided in Theorem 4.6.3. For instance, when

cij = 3 and vij = 1 for all i, j ∈ N , then (4.17) is not satisfied, whereas NNC, PBT,

and PBF are.

It can easily be verified that the converse of Theorem 6.2.6 is not true, i.e. examples

exist of joint B&G-1 functions that do not satisfy NNC, PBT, and PBF while local-

Nash networks exist.

In Figure 6.3 we show the characterization of B&G-1 functions graphically. Here,

we draw four cycles which correspond to the properties PBT, NNC, PBF, and PBG.

The intersections of these cycles create twelve area’s, labeled from 1 to 12. Vertices

inside a cycle correspond to B&G-1 functions that satisfy the corresponding property

and vertices outside the cycle correspond to B&G-1 functions that do not satisfy the

corresponding property. For instance, all vertices in the area 7 are contained inside the
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cycle of PBT, and outside the other cycles. Therefore, the payoff functions in that

area satisfy PBT, and none of the other properties.

The areas are listed in Table 6.1. Per area, we show which properties are satisfied

and we provide an example that proves non-emptyness of that area. All these examples

are three-person games. For area’s 9 and 12 we use two examples each, to which we

will refer in the next section.

The gray area (number 12) in Figure 6.3 is the area that corresponds to B&G-1

functions that are orderly. For an example of an orderly B&G-1 function, we used a

trivial one (12a) with all c and v values equal to 0. Example 12b shows that B&G-1

functions with heterogeneity among agents and link costs can be orderly as well.

PBT

NNC

PBF

PBG

9

10

6

2

8

4

3

5

7

1211

1

Figure 6.3: The characterization of B&G-1 functions. The gray area corresponds to

the class of orderly B&G-1 functions.
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Area Properties Example

PBT NNC PBF PBG cij cik vij vik

1 n n n n -1 0 0 -2

2 n n n y -1 1 0 -1

3 n n y y -1 3 2 1

4 n y n n 0 2 0 -1

5 n y n y 0 2 0 1

6 n y y y 1 3 2 1

7 y n n n 1 -2 3 -3

8 y n n y -1 3 -2 2

9a y n y y -1 -1 3 3

9b y n y y 1 -1 3 1

10 y y n n 3 0 4 -2

11 y y n y 2 3 1 1

12a y y y y 0 0 0 0

12b y y y y 1 2 4 1

Table 6.1: The twelve area’s in Figure 6.3.

6.3 Downstream efficiency

In this section, we study the role of property downstream efficiency (DE) with respect

to B&G-1 functions. In the next lemma, we show that DE is equivalent to owner-

homogeneous link costs and non-negative profits.

Lemma 6.3.1. Let πi be a B&G-1 function. Then πi satisfies DE if and only if

OHC (short for owner-homogeneous costs) cij = cik ∀j, k ∈ N,
NNP (short for non-negative profits) vij ≥ 0 ∀j ∈ N.

Proof.

(DE implies OHC) Suppose that DE is satisfied, and let j and k be agents in N\{i}.
Consider a network g, where all agents in N \{i} are contained in a directed cycle

and where i is isolated. Since there exists a directed path between j and k in

both ways, we have by DE that πi(g+(j, i)) = πi(g+(k, i)). Therefore it follows

that cij = cik for all j, k ∈ N .

(DE implies NNP) Suppose that DE is satisfied. Let j and k be agents in N \ {i}.
Consider network g = {(k, j), (k, i)}. Then by DE we have

0 ≤ πi
(
g + (j, i)− (k, i)

)
− πi(g) = cik − cij + vij .

Since DE implies OHC, it follows that vij ≥ 0.

(OHC and NNP imply DE) Suppose that OHC and NNP are satisfied and DE

is not. Then a network g exists where πi(g + (j, i)) < πi(g + (k, i)), where (j, i)
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and (k, i) do not exist, and where a directed path from k to j exists in g−i. Since

link costs are owner-homogeneous (by OHC), there is no path vice versa, for

otherwise πi(g + (j, i)) = πi(g + (k, i)). Let S ⊂ N be the set of agents that i

observes in network g+ (j, i) and not in g+ (k, i). Notice that S 6= ∅, since there

is no directed path from j to k in g−i, i.e. j ∈ S. We have

0 > πi(g + (j, i))− πi(g + (k, i)) = vi(S)− cij + cik

Because OHC is satisfied, it follows that vi(S) < 0. Hence an agent ` exists in

S such that vi` < 0. This contradicts NNP. �

We obtain the following theorem.

Theorem 6.3.2. Let πi be a B&G-1 function. Then πi is orderly and satisfies DE if

and only if
(NNC) cij ≥ 0 ∀j ∈ N,
(OHC) cij = cik ∀j, k ∈ N,
(NNP) vij ≥ 0 ∀j ∈ N.

From Corollay 4.3.2 we obtain the following result which is also proved in Theo-

rems 2.2.2 and 2.2.8.

Corollary 6.3.3. For joint B&G-1 functions with owner-homogeneous and non-negative

link costs and heterogeneous and non-negative profits, global-Nash networks exist.

In the next proposition, we show that DE implies BT and BF in the context of

the one-way flow model. In other words, we show that owner-homogeneous link costs

(OHC) and non-negative profits (NNP) imply PBT and PBF.

Proposition 6.3.4. The properties OHC and NNP imply PBT and PBF.

Proof. Let πi be a payoff function that satisfies OHC and NNP.

By NNP we have that vi(T ) ≥ 0 for all T ⊆ N . Furthermore, by OHC, cij = cij
for all j, k ∈ N . Therefore if follows that cij ≥ cik − vi(T ) and hence that PBT is

satisfied.

Let S ⊆ N be a set of agents with j ∈ S such that cij ≤ vi(S). Let S′ ⊃ S. By

NNP it follows that cij ≤ vi(S
′). By OHC it follows that cik = cij ≤ vi(S

′), for all

k ∈ S′ \ {j}. Therefore, PBF is satisfied. �

Examples 9a, 9b, 12a, and 12b show that neither NNC implies OHC and NNP

nor vice versa. Figure 6.4 provides a graphical characterization of OHC and NNP

related to the other properties.
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PBT

NNC

OHC NNP'

PBG

9b

12a

12b

9a

PBF

Figure 6.4: The characterization of B&G-1 functions. The gray area corresponds to

the class of orderly B&G-1 functions that also satisfy DE.





Chapter 7

An axiomatic approach

covering the two-way flow

model

In this chapter we generalize the two-way flow model of network formation, which

already has been treated in Section 3.6. The only difference with the one-way flow

model, is that profits are distributed in the network in both directions of the links.

The links are still directed in the two-way flow model, in order to indicate the owners.

We provide an axiomatic framework of payoff properties that covers this model. We

compare the properties that we propose to the properties that are used in Chapter 4

to cover the one-way flow model.

In the previous chapters, the links are depicted as arcs pointing at their owners. In

the one-way flow model, the direction of the arcs also indicates the information flow.

Consider the network depicted in Figure 7.1(a). In the one-way flow model, agent 1

does not receive profits (e.g. information) from anyone, and agents 2 and 3 only receive

profits from agent 1. However, in the two-way flow model, all three agents share profits.

Therefore, we prefer to depict a link owned by agent i as a line that is cut by a short

line next to i (see Figure 7.1(b)). Thus, in the two-way flow model, profits flow in both

directions of the links, and the owners of the links are indicated by short lines.

The two-way flow model is introduced by Bala and Goyal (2000a). They prove

the existence of Nash networks and characterize the architecture of those networks for

payoff functions with homogeneous link costs and profits. Galeotti et al. (2006) extend

this model by introducing heterogeneous link costs and profits. They characterize the

architecture of strict Nash networks, while assuming such networks exist. Haller et al.

(2007) prove the existence of Nash networks for payoff functions with heterogeneous

profits and homogeneous link costs. Furthermore, they show by means of a counterex-

ample that Nash networks do not always exist for games with heterogeneous link costs.

91



92 CHAPTER 7. AN AXIOMATIC APPROACH COVERING THE T.W.F. MODEL

1 2

3

(a)

1 2

3

(b)

Figure 7.1: Representations of the same network for the one-way (a) and the two-way

(b) flow model.

However, for a subclass of those games, Kamphorst and Van der Laan (2007) prove the

existence of Nash networks. Here, agents are divided into groups which are located on

a line. The cost of a link is increasing in the distance between the groups where both

adjacent agents belong to. When both agents belong to the same group, this cost is a

fixed positive value.

In Chapter 4, we proposed a framework of axiomatic payoff properties that is in-

spired by the one-way flow model. A full characterization of B&G-1 functions (i.e.

payoff functions used in that model) that satisfy our properties has been provided in

Chapter 6. We showed that all B&G-1 functions with heterogeneous profits and owner-

homogeneous link costs satisfy these properties, as well as a subset of B&G-1 functions

with heterogeneous profits and link costs.

However, the axiomatic framework in Chapter 4 does not cover B&G-2 functions,

i.e. payoff functions used in the two-way flow model. In particular, property BG is

violated. According to this property, each link remains beneficial when another link is

added to the network. To see why property BG is violated, consider a component where

agent i is active by an own link. Via this link, agent i observes the whole component

(recall that profits flow in both directions of the links in the two-way flow model).

Suppose that another agent in that component, say j, forms link (i, j). Although this

action by j does not make sense, it is allowed. Then i’s own link becomes redundant,

since he now observes the whole component by link (i, j). If his own link has a strictly

positive cost, then it is non-beneficial in the obtained network. This violates property

BG.

In this chapter we develop axiomatic payoff properties that are intuitive in the

context of the two-way flow model. With these payoff properties, we prove the existence

of local- and global-Nash networks. We do this by generalizing the short and elementary

proof by Haller et al. (2007). Although they did not use the definitions of local actions

and local-Nash networks, their line of proof is based on local improvements, which will

be highlighted in our approach.

We provide a full characterization of B&G-2 functions that satisfy our properties.

We show that B&G-2 functions with negative profits exist that satisfy these properties,

and therefore imply the existence of local- and global-Nash networks. Further, we

show that these properties are satisfied by B&G-2 functions where a subset of links are
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affordable and owner-homogeneous while the other links are too expensive in any case.

Furthermore, we provide examples of payoff functions that do not belong to the

two-way flow model, even though they satisfy all our properties. These functions also

take other properties of the network architecture into account, for instance the set of

agents contained in a cycle. Therefore, our approach not only covers the two-way flow

model with owner-homogeneous links costs, but also generalizes it.

This chapter is outlined as follows. First, we present the model and the notations

that we will use throughout. Then, in Section 7.2 we propose a framework of axiomatic

payoff properties that is based on the two-way flow model. For payoff functions that

satisfy these properties, we prove the existence of local- and global-Nash networks. In

Section 7.3 we show that the properties are independent of each other. In Section 7.4

we provide a full characterization of B&G-2 functions that satisfy all properties, and we

give examples of non-B&G-2 functions that satisfy all properties. Finally, in Section 7.5

we provide concluding remarks.

This chapter is based on Derks et al. (2009a).

7.1 Model and notations

In this chapter, we will use the same notations as in the previous chapters.

Recall that

Nd
i (g) = {j ∈ N : (j, i) ∈ g}.

Further, recall the following definitions from Section 3.6, where we studied the com-

plexity of finding best responses in the two-way flow model. Let

Nu
i (g) = {j ∈ N : an undirected path between j and i exists in g}.

In the context of the two-way flow model, we say that agent i observes agent j in

network g if j ∈ Nu
i (g). Payoff function πi(g) is called a B&G-2 function if

πi(g) = vi
(
Nu

i (g)
)
− ci

(
Nd

i (g)
)

(7.1)

where we use the following shorthand notation: vi(S) =
∑

j∈S vij and ci(S) =
∑

j∈S cij .
Here, vij is the profit that i receives from observing j and cij is the cost of link (j, i).

In Chapters 2 and 4, we saw that proper networks (networks in which each agent

has at most one outgoing link) are essential in the one-way flow model. However,

proper networks are not suitable candidates for Nash networks in the two-way flow

model. For instance, consider a proper network with a cycle. Since profits flow in both

directions of the arcs, one link in this cycle is redundant. Therefore, this cannot be a

Nash network, unless all links in this cycle are for free.

A more appropriate architectural property is the following. Let network g be called

minimal (for the undirected case) if for each link (j, i), an undirected path between

j and i does not exist in g − (j, i). An example of a minimal network is depicted in
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Figure 7.2. In the literature, minimal networks are essential in the two-way flow model.

For instance, Galeotti et al. (2006) show that all strict Nash networks are minimal.

Figure 7.2: A minimal network.

7.2 Axiomatization

In this section, we develop intuitive axiomatic payoff properties for the two-way flow

model, in such away that we are able to prove the existence of Nash networks. For

this purpose, we will use the constructive proof provided by Haller et al. (2007). This

proof shows that Nash networks exist for games with homogeneous link costs and

heterogeneous profits. We develop axiomatic payoff properties such that this proof

holds for a more general class of payoff functions.

The first property that we introduce, disjoint additivity, is also used in our frame-

work in Chapter 4.

Property DA We say that a payoff function πi is disjoint additive (DA for short), if

for each two networks g and g′, disjoint w.r.t. an agent i, we have

πi(g + g′) = πi(g) + πi(g
′).

Recall the following definitions from Chapter 4. Link (j, i) is called profitable in g

if:

πi(g) ≥ πi(g − (j, i)) if (j, i) ∈ g,

and

πi(g + (j, i)) ≥ πi(g) if (j, i) 6∈ g.

Further, link (j, i) is called beneficial in network g whenever

πi(g−ij) ≥ πi(gj−i).
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Thus, the influence of a single link (j, i) is measured in component gj−i. A network is

called beneficial if all existing links in it are beneficial.

In the following result, we compare profitability and beneficiality with respect to

minimal networks.

Lemma 7.2.1. If network g is minimal, and π is disjoint additive, then profitability

and beneficiality are equivalent notions for all existing links and for some non-existing

links:

(i) πi(g)− πi(g − (j, i)) = πi(g−ij)− πi(gj−i) for all (j, i) ∈ g,

(ii) πi(g + (j, i))− πi(g) = πi(g−ij)− πi(gj−i) for all (j, i) 6∈ g with j 6∈ Nu
i (g).

Proof. First, let (j, i) ∈ g. Since g is minimal, g−ij and g−g−ij are i-disjoint. Therefore,

by DA we have

πi(g) = πi(g−ij) + πi(g − g−ij). (7.2)

Since g−ij and g − g−ij are i-disjoint, networks gj−i and g − gj−i are also i-disjoint.

Hence by DA we obtain

πi(g − (j, i)) = πi(g
j
−i) + πi

(
g − gj−i − (j, i)

)
. (7.3)

With g − g−ij = g − gj−i − (j, i), we obtain (i) from (7.2) and (7.3).

Now, let (j, i) 6∈ g, with j 6∈ Nu
i (g). Let g′ = g + (j, i). Since g is minimal and

j 6∈ Nu
i (g), it follows that g′ is also minimal. Since (j, i) ∈ g′, (i) can be applied with

respect to g′. Hence, we obtain (ii). �

The next property is proposed in Chapter 4.

Property NA We say that πi satisfies NA (naturality) if πi(g+ (k, i)) ≤ πi(g) when-

ever there is a directed path from k to i in network g.

According to this property, for each agent k ∈ Ni(g), agent i’s payoff will not

increase after adding (k, i) to g. This property is intuitive in the one-way flow case,

because when i already observes k (see Figure 7.3a), then he will not be better off by

forming link (k, i). However, in the two-way flow case, agent i observes k already if

an undirected path exists between them (see Figure 7.3b). Therefore we propose the

following alternative.

Property NAu We say that πi satisfies NAu (naturality, for the undirected case) if

πi(g + (k, i)) ≤ πi(g) whenever there is a undirected path between k and i in network

g.
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i

k

i

k

(a) (b)

Figure 7.3: Agent i observes k in the one-way flow case (a) and in the two-way flow

case (b).

Observe that by this property, minimal networks are preferred over non-minimal

networks. More specifically, any non-minimal network g can be turned into a minimal

network g′ by a sequence of deletions of redundant links, which are good local responses

by NAu.

In the following theorem we show that for payoff functions that satisfy DA and

NAu, each minimal local-Nash network is also a global-Nash network.

Theorem 7.2.2. Let π be a joint payoff function that satisfies DA and NAu. Then

each minimal local-Nash network is global-Nash.

Proof. Let g be a minimal local-Nash network. Suppose to the contrary that g is not

global-Nash, say i can strictly improve in g. Let S = Nd
i (g) be his current action, and

let S̃ be a strictly improving action, such that |S̃ \ S| is as small as possible and such

that among those, |S \ S̃| is as small as possible. Let g̃ be the network obtained after

i plays S̃.

First we show that g̃ is minimal. Suppose otherwise. Then an undirected cycle

exists in g̃. It contains i, since only links adjacent to i have changed compared to g.

Moreover, this cycle contains at least one link (j, i), with j ∈ S̃ \ S (otherwise this

cycle also exists in g). By NAu we have πi(g̃) ≤ πi(g − (j, i)), and hence the action

S̃ \ {j} is at least as good as S̃. This contradicts the minimality of |S̃ \ S|. Therefore,

g̃ is minimal.

First assume j ∈ S̃ \ S.

Suppose that j ∈ Nu
i (g). Then an agent k ∈ S exists such that k ∈ Car(gj−i). Since

g is local-Nash, agent i does not improve his payoff by replacing (k, i) with (j, i), i.e.

0 ≥ πi
(
g − (k, i) + (j, i)

)
− πi(g)

= πi
(
g − (k, i) + (j, i)

)
− πi(g − (k, i)) −

(
πi(g)− πi(g − (k, i))

)
= πi(g−ij)− πi(gj−i) −

(
πi(g−ik)− πi(gk−i)

)
= πi(g̃)− πi(g̃ − (j, i)) −

(
πi(g̃ − (j, i) + (k, i))− πi(g̃ − (j, i))

)
= πi(g̃) − πi(g̃ − (j, i) + (k, i)).
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The second equality follows by applying Lemma 7.2.1(ii) to network g − (k, i) and

link (j, i) 6∈ (g − (k, i)) with j 6∈ Nu
i (g − (k, i)), and by applying Lemma 7.2.1(i) to

network g and link (k, i) ∈ g. The third equality follows by applying Lemma 7.2.1(i)

to network g̃ and link (j, i) ∈ g̃, and by applying Lemma 7.2.1(ii) to network g̃ − (j, i)

and link (k, i) 6∈ (g̃ − (j, i)). Notice that k 6∈ Nu
i (g̃ − (j, i)), because g̃ is minimal, and

j and k are active in the same component in g−i. Hence the action S̃ \ {j} ∪ {k} is at

least as good as S̃. Since
∣∣(S̃ \ {j} ∪ {k}) \ S∣∣ < |S̃ \ S|, we obtain a contradiction.

Hence j 6∈ Nu
i (g). By minimality of g̃, it follows that g−ij and g̃−g−ij are i-disjoint,

and also gj−i and g̃ − g−ij . By DA we obtain

πi(g̃) = πi(g̃ − g−ij) + πi(g−ij) and (7.4)

πi(g̃ − (j, i)) = πi(g̃ − g−ij) + πi(g
j
−i). (7.5)

Since g is local-Nash, we have πi(g + (j, i)) ≤ πi(g). From this observation, it

follows by Lemma 7.2.1(ii) that πi(g−ij) ≤ πi(gj−i). Hence by (7.4) and (7.5) we obtain

πi(g̃) ≤ πi(g̃−(j, i)). Hence S̃\{j} is at least as good as S̃, with
∣∣(S̃\{j})\S∣∣ < |S̃\S|.

This is a contradiction.

Hence we conclude that S̃ ⊆ S.

Now assume j ∈ S \ S̃.

Since g is minimal local-Nash, (j, i) is profitable in g and by Lemma 7.2.1(i) also

beneficial in g and hence also in g̃. Since S̃ ⊆ S and j 6∈ Nu
i (g − (j, i)), it follows that

j 6∈ Nu
i (g̃). Since g̃ is minimal, it follows by Lemma 7.2.1(ii) that (j, i) is also profitable

in g̃. Therefore S̃ ∪ {j} is at least as good as S̃, with
∣∣S \ (S̃ ∪ {j})

∣∣ < |S \ S̃|. This is

a contradiction.

Hence we conclude that S̃ = S, which contradicts S̃ being a strict improvement.

Therefore, g is global-Nash. �

The following property has been proposed in Chapter 4.

Property BG Payoff function πi satisfies BG (beneficial growth) if

πi
(
(g + (k, r))−ij

)
≥ πi

(
(g + (k, r))j−i

)
for each two agents k, r, whenever πi(g−ij) ≥ πi(gj−i).

However, it does not apply to all B&G-2 functions. To see this, consider network

g = {(j, i)}, and let all profits and costs be equal to 1. Then πi(g) = vii + vij − cij = 1

and πi(g−i) = vii = 1. Thus, link (j, i) is beneficial in g. Now consider network

g′ = g + (i, j). Since agent i also observes agent j by link (i, j), his own link is redun-

dant in g′. We have πi(g
′) = vii + vij − cij = 1 while πi(g

′
−i) = vii + vij = 2. We can

fix this by the following refinement.
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Property BGu Payoff function πi satisfies BGu (beneficial growth for the undirected

case) if

πi
(
(g + (k, r))−ij

)
≥ πi

(
(g + (k, r))j−i

)
for each two agents k, r, whenever g + (k, r) is minimal and πi(g−ij) ≥ πi(gj−i).

Thus, a link remains beneficial if another agent adds a link such that the obtained

network is minimal. The intuition behind this property is that in a minimal network, at

most one undirected path exists between each pair of agents. Hence, the set of agents

observed by agent i via link (j, i) in a minimal network g, is also observed uniquely via

(j, i) in the minimal network g + (k, r).

The last property that we introduce is very demanding.

Property RP Payoff function πi satisfies RP (replacement) if the following holds. Let

g be a minimal network where (j, i) ∈ g. If (j, i) is beneficial, then πi(g−ik) ≤ πi(g−ij),
for each agent k ∈ Car(gj−i).

Applying Lemma 7.2.1, this property implies that whenever a link is profitable

in a minimal network, any replacement within the same component is not a strictly

improving local action.

The intuition behind this property is the following. For our line of proof, our aim is

to design a property such that beneficial links in a minimal network remain beneficial

after a replacement. Replacements within the same component could have a negative

influence on the beneficiality of other links. Consider for instance network g depicted

in Figure 7.4(a), and consider the replacement of (j, i) by (k, i). The obtained network

g′ is depicted in Figure 7.4(b). Now focus on link (j, r). In network g, agent r observes

5 agents via this link, whereas in network g′, he only observes 2 of them. A B&G-2

function can be chosen such that link (j, r) is beneficial in g but not anymore in g′. By

this argument, we discourage replacements inside a component with property RP.

i

k

j
r

i

k

j
r

(b) Network g’(a) Network g

Figure 7.4: A replacement.

Now we generalize the result of Haller et al. (2007), which is that Nash networks

exist for B&G-2 functions with heterogeneous profits and homogeneous link costs. We
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reconstruct their proof with the implementation of the payoff properties DA, NAu,

BGu, and RP.

Theorem 7.2.3. Let π be a joint payoff function that satisfies DA, NAu, BGu, and

RP. Then a minimal local-Nash network exists.

Proof. First observe that the empty network is minimal and beneficial. Now let g be

any minimal and beneficial network and not local-Nash, say i can improve.

By Lemma 7.2.1(i) it follows that each link in g is profitable, and therefore i does

not gain from removing a link.

Because of RP, agent i does not strictly prefer to replace link (k, i) with (j, i), where

j ∈ Car(gk−i). Now consider the replacement of (k, i) with (j, i), where j 6∈ Car(gk−i).
By NAu, we may assume that j 6∈ Nu

i (g). Therefore, g + (j, i) is minimal. Since g

is beneficial, link (k, i) is beneficial in g, and consequently also in network g + (j, i).

By Lemma 7.2.1(i) it follows that (k, i) is also profitable in g + (j, i). Therefore, the

addition of (j, i) is at least as good as the replacement of (k, i) by (j, i).

Consequently, agent i has an improving addition, say link (j, i). Let the obtained

network be g′ = g + (j, i). By NAu, we may assume that j 6∈ Nu
i (g). Hence g′ is also

minimal. Since (j, i) is profitable in g′, it follows by Lemma 7.2.1(i) that link (j, i) is

also beneficial in g′. Further, the other links in g′ are beneficial by BGu. Hence, g′ is

beneficial.

Since g′ is minimal and beneficial, we can repeat this step if g′ is not local-Nash.

At each iteration, a link is added, and therefore, the network grows. Since a minimal

network of n agents has at most n− 1 links, we know that in finitely many iterations

we obtain a local-Nash network. �

Since the network that we obtained in this proof is minimal, we arrive at the fol-

lowing corollary from Theorem 7.2.2.

Corollary 7.2.4. Let π be a joint payoff function that satisfies DA, NAu, BGu, and

RP. Then a minimal global-Nash network exists.

7.3 Property independence

In this section, we show independence of the four properties of our framework.

Theorem 7.3.1. The properties DA, NAu, BGu, and RP are independent of each

other.

Proof. We show that for each property, a payoff function exists which does not satisfy

that property while it satisfies all other properties.

(all but DA) The following payoff function satisfies all properties, except DA:

πi(g) = |Nu
i (g)|2. (7.6)
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Property DA is not satisfied, because for any two i-disjoint networks g and g′

where i ∈ Car(g) ∩ Car(g′), we have |Nu
i (g)|2 + |Nu

i (g′)|2 < |Nu
i (g + g′)|2. The

properties NAu, BGu, and RP are clearly satisfied.

(all but NAu) The following payoff function satisfies all properties, except NAu:

πi(g) = |Nd
i (g)|. (7.7)

Property NAu is not satisfied, because for any network g where (k, i) is not

present, we have πi(g+ (k, i)) = πi(g) + 1, hence also if an undirected path exists

between k and i. Property DA is clearly satisfied. Properties BGu and RP are

satisfied because πi(g−ij) = πi(g−ik) = 1 for any network g and any two agents

j and k.

(all but BGu) Let agent 1 be a special member of N , and let i ∈ N \ {1}. The

following payoff function satisfies all properties, except BGu:

πi(g) =

{
−1 if 1 ∈ Nu

i (g);

0 otherwise.
(7.8)

Property BGu is not satisfied because of the following. Let g be a minimal

network where i observes set S 63 1, where i has no outgoing links, and where

agent 1 is isolated. Then πi(g−ij) = πi(g
j
−i) = 0 for some j ∈ S. If an agent r ∈ S

adds (1, r), then we obtain πi
(
(g + (1, r))−ij

)
= −1 while πi

(
(g + (1, r))j−i

)
= 0.

Therefore, BGu is not satisfied. Property DA is clearly satisfied. Properties

NAu and RP are satisfied, because neither an addition of a ‘redundant’ link nor

a replacement of a link within the same component affects the set of observed

agents.

(all but RP) Let agent 1 be a special member of N , and let i ∈ N \{1}. The following

payoff function satisfies all properties, except RP:

πi(g) =

{
1 if 1 ∈ Nd

i (g) and 1 6∈ Nu
i (g − (1, i));

0 otherwise.
(7.9)

This payoff function does not satisfy RP, because in any network g1−i, we have

πi(g−i1) = 1, while πi(g−ij) = 0 for each agent j ∈ Car(g1−i) \ {1}. It can be

verified that properties NAu and DA are satisfied. Finally, property BGu is

trivially satisfied because πi(g
j
−i) = 0 and πi(g−ij) ≥ 0 for any network g and

any agent j. �
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7.4 Characterization

Now we would like to know to what extent we generalized the existence result by

Haller et al. (2007) for B&G-2 functions. In other words, the question is which B&G-

2 functions satisfy properties DA, NAu, BGu, and RP, and therefore imply the

existence of local- and global-Nash networks.

It can easily be seen that NAu is satisfied if and only if cij ≥ 0, for all i, j ∈ N . We

will refer to this condition as NNC (non-negative costs).

Further, property DA is clearly satisfied by all B&G-2 functions.

The next lemma characterizes the B&G-2 functions that satisfy property RP.

Lemma 7.4.1. Let πi be a B&G-2 function. Then πi satisfies RP if and only if the

following property holds:

PRP If cij ≤ vi(S) for agent set S ⊆ N and agent j ∈ S, then for each k ∈ S it

holds that either cik = cij or cik > vi(S).

Proof. Suppose that PRP is not satisfied. Then a set S ⊆ N and agents j, k ∈ S

exist where cij ≤ vi(S), cik 6= cij , and cik ≤ vi(S). Without loss of generality we may

assume that cik < cij . Consider a minimal network g where i observes set S in both

g−ij and g−ik. Hence, πi(g−ij) = vi(S) − cij < vi(S) − cik = πi(g−ik), and therefore,

RP is not satisfied.

Now suppose that RP is not satisfied. Then a minimal network g exists, where

(j, i) ∈ g, where πi(g−ij) ≥ πi(g
j
−i), where k ∈ Car(gj−i), and where πi(g−ik) >

πi(g−ij). Let S be the set of agents that i observes via (j, i), i.e. S = Car(gj−i).

Since g is a minimal network, it follows that πi(g−ij) − πi(g
j
−i) = vi(S) − cij ≥ 0,

and hence that cij ≤ vi(S). Since 0 > πi(g−ij) − πi(g−ik) = cik − cij , it follows that

cik < cij . Therefore we have that cik ≤ vi(S) and cik 6= cij ; a contradiction with PRP.

�

The following lemma characterizes the set of B&G-2 functions that satisfy BGu.

Lemma 7.4.2. Let πi be a B&G-2 function. Then πi satisfies BGu if and only if the

following property holds:

PBG If cij ≤ vi(S) for agent set S ⊂ N and agent j ∈ S, then cij ≤ vi(S
′) for all

S′ ⊃ S.

Proof. First suppose that PBG does not hold. Then a set S ⊂ N , a set S′ ⊃ S, and an

agent j ∈ S exist such that cij ≤ vi(S) and cij > vi(S
′). Consider a minimal network

g where i has one incoming link, (j, i), and no outgoing links. Thus, πi(g
j
−i) = 0.

Furthermore, let all agent in S form a component and all agents in S′ \ S form a

component. Let k be an agent in S and let r be an agent in S′. Observe that network



102 CHAPTER 7. AN AXIOMATIC APPROACH COVERING THE T.W.F. MODEL

g + (k, r) is minimal. Since (j, i) ∈ g, and j ∈ S we have πi(g−ij) = vi(S) − cij ≥ 0,

and πi
(
g+ (k, r)−ij

)
= vi(S

′)− cij < 0, while πi(g
j
−i) = πi

(
(g+ (k, r))j−i

)
= 0. Hence,

BGu is not satisfied.

Now suppose that BGu does not hold. Then a network g exists such that link

(k, r) 6∈ g, network g + (k, r) is minimal, πi(g−ij) ≥ πi(g
j
−i), and πi

(
(g + (k, r))−ij

)
<

πi
(
(g + (k, r))j−i

)
. Let S be the set of agents that i observes in g using link (j, i). In

network g+(k, r), let S′ be the set of agents that i observes using (j, i). Notice that since

g and g+ (k, r) are both minimal networks, i uniquely observes S and S′ via (j, i). We

have 0 ≤ πi(g−ij)−πi(gj−i) = vi(S)−cij , and 0 > πi
(
(g+(k, r))−ij

)
−πi

(
(g+(k, r))j−i

)
=

vi(S
′) − cij . Hence we have obtained cij ≤ vi(S) and cij > vi(S

′). Thus we conclude

that PBG is not satisfied. �

Hence, we obtain the following theorem from Lemma’s 7.4.1 and 7.4.2, and from

our observations that any B&G-2 function satisfies DA and that NAu is satisfied if

and only if link costs are non-negative (NNC).

Theorem 7.4.3. Let πi be a B&G-2 function. Then πi satisfies DA, NAu, BGu,

and RP if and only if

(NNC) cij ≥ 0 ∀j ∈ N , and

if cij ≤ vi(S) for agent set S ⊆ N and agent j ∈ S then

(PBG) cij ≤ vi(S′) ∀S′ ⊇ S, and

(PRP) cik = cij or cik > vi(S) ∀k ∈ S.

By Theorem 7.2.3 and Corollary 7.2.4, we know that local- and global-Nash networks

respectively exist for all joint payoff functions that satisfy DA, NAu, RP, and BGu.

Hence we obtain the following result.

Corollary 7.4.4. For joint B&G-2 functions that satisfy NNC, PBG, and PRP,

local-Nash and global-Nash networks exist.

Therefore, we know that local- and global-Nash networks also exist for (some) joint

B&G-2 functions with negative profits. Recall from Chapter 6 that we did not manage

to prove the existence of global-Nash networks for B&G-1 functions with negative

profits (see Corollary 6.3.3).

In Figure 7.5 we show the characterization of B&G-2 functions graphically. Each

area corresponds to a specific subset of B&G-2 functions. Area 8 corresponds to B&G-

2 functions that satisfy NNC, PBG, and PRP. Recall that each B&G-2 function

trivially satisfies DA. Therefore, local- and global-Nash networks exist for each game

where each agent i has a B&G-2 function in area 8.
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Figure 7.5: The characterization of B&G-2 functions.

For each area, an example of a B&G-2 function is given in Table 7.1. In these

examples, three agents are involved, except for area 3 where four agents are involved.1

Area Properties Example

PRP NNC PBG cij cik ci` vij vik vi`

1 n n n -1 0 0 -2

2 n n y -1 3 2 1

3 n y n 0 1 0 1 1 -1

4 n y y 0 1 0 1

5 y n n -1 -1 0 -2

6 y n y -2 -2 0 1

7 y y n 2 2 2 -1

8 y y y 2 2 3 -1

Table 7.1: The eight area’s in Figure 7.5.

In the following result, we show that PBG and PRP imply that links can be

divided in two groups: one with affordable, owner-homogeneous links, and one with

unaffordable links (i.e. cij > vi(N)).

Proposition 7.4.5. Let πi be a B&G-2 function that satisfies PBG and PRP. If

cij ≤ vi(S) for a set S and an agent j ∈ S, then for each k ∈ N either cik = cij or

cik > vi(N).

1It can be verified that an example with three agents for area 3 does not exist.
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Proof. By PBG it follows directly that if cij ≤ vi(S) for some agent j and set S, then

cij ≤ vi(N). By PRP this implies that for each k ∈ N , either cik = cij or cik > vi(N).

�

Thus, our approach generalizes Haller et al. (2007), because we proved the existence

of global-Nash networks for games where profits may be negative, and where link costs

are either affordable and owner-homogeneous, or unaffordable.

However, our framework does not cover the class of B&G-2 functions for which

Kamphorst and Van der Laan (2007) prove the existence of Nash networks. Profits are

homogeneous in those functions, and link costs are heterogeneous under the following

conditions. Agents are divided into groups that are located on a line. If agents i and j

belong to the same group, then the cost of link (j, i) is a fixed positive value, and if they

belong to different groups, this cost is strictly increasing in the distance between these

two groups. It is easily verified that those B&G-2 functions satisfy the properties DA,

NAu, and BGu, but do not satisfy RP. For future research, it would be worthwhile

to develop axiomatic properties that cover those B&G-2 functions.

Besides B&G-2 functions, also other payoff functions exist that satisfy our frame-

work of payoff properties, for instance:

πi(g) = |Ku
i (g)| − |Nd

i (g)|, (7.10)

πi(g) = |Cu(g−i) ∩Nu
i (g)| − |Nd

i (g)|, (7.11)

where Ku
i (g) is the number of spokes that i observes in g (link (k, r) is called a spoke in

g if there exists a cycle in g− (k, r) containing both k and r) and Cu(g) is the number

of agents that are contained in an undirected cycle in g. These two payoff functions

satisfy all properties, i.e. DA, NAu, BGu, and RP. They fall outside the class of

B&G-2 functions, because B&G-2 functions only take the sets Nu
i (g) and Nd

i (g) into

account, while the payoff functions (7.10) and (7.11) also take other properties of the

network architecture into account.

7.5 Concluding remarks

In this chapter, we proposed a framework of payoff properties that covers the two-

way flow model, in the same way as we did in Chapter 4 for the one-way flow model.

We proved the existence of local- and global-Nash networks for B&G-2 functions with

owner-homogeneous link costs, and where profits may be negative. Further, also non-

B&G-2 functions exist that satisfy our properties, for instance the ones defined in (7.10)

and (7.11).

In Chapter 9, we discuss the property frameworks proposed in this chapter and in

Chapter 4 and relate them to models with information decay and imperfectly reliable

links.



Chapter 8

Project Support Games

In economic situations, one often encounters a large project that has to be financed

by several parties. Each party benefits from completing the project. The question is

whether the parties are willing to invest in the project, and if so, how much. In this

chapter, we study so-called project support games in order to answer these questions.

Although project support games do not seem to be related to network formation at

first glance, they are inspired by a model of network formation proposed by Bloch and

Jackson (2007). In that model, agents make investments (positive or negative) in each

link. Whenever the investments in a link are non-negative, this link will be formed.

Instead of the formation of a network consisting of links, we study the financing of a

project consisting of tasks.

Let a project support game be defined by a set of agents, a set of tasks, a cost

function, and a utility profile. A project consists of several tasks, each of them having

its own development cost. However, since these costs are related to each other, we define

a cost function on the set of all projects. When a project is financed and executed,

each agent receives a utility.

We discuss the following approach. Simultaneously, the agents propose an invest-

ment in each task. These investments may be negative, which means that agents can

make demands instead of offers. A project is called feasible if all investments in it

together cover its cost. For the feasible project that is executed, each agent receives

his utility, and pays his proposed investments in the tasks of that project.

Stability is the property of an investment profile so that in case the grand project

(i.e. the project containing all tasks) is executed, there is no incentive to deviate. We

provide necessary and sufficient conditions for which stable investments exist.

We relate stability to the concept of Nash equilibria. The investments of an agent

can be seen as his action, and the investment profile as the actions of all agents together.

A feasible project for which the aggregate utility minus its cost is maximal, is actually

executed. For this project, each agent receives his payoff, that is his utility minus his

proposed investments in the tasks of that project. We show that a stable investment

105
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profile is a Nash equilibrium where the grand project is executed.

Our approach is purely theoretical. Step-level public goods games are studied in the

literature to examine this subject from an experimental point of view. An overview of

those games is provided by Schram et al. (2008).

This chapter is outlined as follows. In Section 8.1 we introduce the model. Then,

in Section 8.2 we provide conditions for which stable investments exist. By means of

examples, we show in Section 8.3 how project support games can be applied in specific

economic situations. In Section 8.4 we relate stability to the Nash equilibrium concept.

Finally, in Section 8.5 we discuss the model and relate it to the literature.

This chapter is based on Derks et al. (2009b).

8.1 Model

Let (N,E, c, u) denote a project support game, where N is a fixed set of agents and

E = {e1, . . . , em} is a set of tasks. A subset of E is called a project and the set of

projects is denoted by 2E . Further, c : 2E → R is a cost function, and u = (ui)i∈N is a

utility profile where ui : 2E → R is the utility function of each agent i ∈ N . Observe

that the utilities and the cost of the empty project may be non-zero.

The question that we address in this chapter is whether the agents are willing to

invest in the grand project E. If for instance, c(E) = c(P ) while ui(E) < ui(P ), then

agent i prefers project P over E, and therefore he will be reluctant to invest in the

tasks in E \ P .

The investments of the agents are modeled as follows. Let t = (tie)i∈N,e∈E be an

investment profile, where tie is the investment of agent i in task e. Project P ⊆ E is

called t-feasible if ∑
i∈N

∑
e∈P

tie ≥ c(P )

(here we assume that summation over an empty set is zero, so that the empty project

is feasible for any investment profile when c(∅) ≤ 0).

Given an investment profile t, a t-feasible project P ⊆ E will be executed, and the

gain for each agent i is then given by:

ui
(
P
)
−
∑
e∈P

tie.

We do not yet explicitly model which feasible project will be executed (in Section 8.4

we do). The reason for this is that we are interested whether investments can be found

such that there is no incentive to deviate from the grand project E. This property is

called stability and is covered in the following section.



8.2. STABILITY 107

8.2 Stability

In this section we are looking for an investment profile t such that any deviation from

the grand project E is not profitable.

Consider an agent i. Given the investments of all other agents, the minimum value

of investments that i has to propose in order to make project E feasible is

c(E)−
∑
j 6=i

∑
e∈E

tje. (8.1)

This can be seen as: agent i pays the total cost for the grand project E, but he is

sponsored by the other agents. In this case, i’s gain is given by

ui(E)− c(E) +
∑
j 6=i

∑
e∈E

tje.

This analysis can be applied to any project P ⊆ E. This brings us to the following

observation. Grand project E is preferred over any other project P ⊂ E whenever

ui(E)− c(E) +
∑
j 6=i

∑
e∈E

tje ≥ ui(P )− c(P ) +
∑
j 6=i

∑
e∈P

tje ∀i, ∀P ⊂ E. (8.2)

The left-hand side and the right-hand side correspond to the gain of agent i when

respectively E and P ⊂ E are executed.

We want to find investments that satisfy (8.2) such that the sum of these investments

equals the cost of E. Consider the following constraint:∑
i∈N

∑
e∈E

tie ≤ c(E). (8.3)

This constraint may look contra-intuitive at first glance, because we rather expect the

total investment to be greater or equal than the total cost. But if the total investment

is strictly less than c(E), then the investments can be raised as follows:

t′ie = tie +
c(E)−

∑
j∈N,e′∈E t

j
e′

n|E|
for all i ∈ N, e ∈ E. (8.4)

If t satisfies (8.2), then t′ also satisfies (8.2), because the left-hand side of this inequality

is raised at least as much as its right-hand side. By (8.4), it follows directly that if t

satisfies (8.3), then t′ satisfies (8.3) with equality.

An investment profile t is called stable if (8.2) and (8.3) hold. To find stable invest-

ments, we can solve the following LP problem:

minimize
∑
i∈N

∑
e∈E

tie

subject to (8.2).
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Stable investments exist if and only if the optimum value is at most c(E). More

specifically, the optimal solutions of the LP problem are stable if and only if (8.3)

holds. If the optimum value is less than c(E), then we can apply (8.4) to obtain stable

investments that are equal to c(E).

Observe from (8.2) that each agent i is only interested in the total investments of

the other agents w.r.t. a single task, and not in the individual investments. Therefore,

we define a profile q = (qie)i∈N,e∈E with

qie =
∑
j 6=i

tje ∀i ∈ N, ∀e ∈ E. (8.5)

Thus, qie is equal to the total investment of all agents in N \ {i} on task e.

Now, we show that there is a one-to-one correspondence between the t and q profiles

with this substitution. By (8.5) we know that each tie is contained in (n− 1) values of

q, namely in each qje where j 6= i. Therefore we have

∑
i∈N

tie =

∑
j∈N qje

n− 1
∀e ∈ E. (8.6)

Writing the left-hand side as tie+
∑

j 6=i t
j
e = tie + qie for each agent i, we obtain

tie =

∑
j∈N qje

n− 1
− qie ∀i ∈ N, ∀e ∈ E. (8.7)

Hence, we conclude that there is a one-to-one correspondence between t and q.

By the substitution of t with q, constraints (8.2) can be rewritten as

ui(E)− c(E)+
∑
e∈E

qie ≥ ui(P )− c(P ) +
∑
e∈P

qie ∀i ∈ N, ∀P ⊂ E. (8.8)

Observe that, in contrast with (8.2), only variables regarding agent i are contained in

(8.8).

We obtain (8.3) in terms of q by the following derivation∑
i∈N

∑
e∈E

qie =
∑
i∈N

∑
e∈E

∑
j 6=i

tje =
∑
e∈E

∑
j∈N

(n− 1)tje

=
(∑
i∈N

∑
e∈E

tie

)
(n− 1) ≤ (n− 1)c(E). (8.9)

Hence, in order to find stable investments, we have to find a q = (qie)i∈N,e∈E such

that conditions (8.8) and (8.9) hold. This can be done by minimizing
∑

e∈E q
i
e for each

agent i separately:
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minimize
∑
e∈E

qie

subject to ui(E)− c(E) +
∑
e∈E

qie ≥ ui(P )− c(P ) +
∑
e∈P

qie ∀P ⊂ E.
(8.10)

Thus we obtained a decomposition into agent separated LP problems.

Consider ui − c as a set function. Observe that its value for the empty project may

not be equal to 0, which is for example the case when setup costs are involved. In case

the value of ui − c with respect to the empty project equals 0, then this set function

is equivalent to the characteristic function of a cooperative game. When adding an

appropriate additive game1 to ui−c, the obtained set function (or game) will be grand

coalition monotone (GCM), i.e. the value for the grand coalition (in our case, E) is

greater than or equal to the value for any other coalition.

The constraints of the LP problem (8.10) express the GCM property, where q can

be seen as an additive game. Let M(ui − c), the GCM value of set function ui − c, be

equal to the optimum value of LP problem (8.10). By (8.9) we obtain the following

theorem:

Theorem 8.2.1. A stable investment profile t exists if and only if∑
i∈N

M(ui − c) ≤ (n− 1)c(E). (8.11)

The intuition of Theorem 8.2.1 is as follows. If agent i is responsible for the costs,

then his actual gain is ui − c. The other agents may contribute to the costs in such a

way that the grand project E is the most beneficial outcome for i. In case the agents’

influence on the costs is configured by contributions on the level of the tasks, then

M(ui − c) is the minimal total contribution such that the grand project is the most

profitable project for i. So, for realizing the grand project, agent i needs to contribute

at least c(E)−M(ui − c), and (8.11) now states that the total of these contributions,

over all agents, should be at least the cost of the grand project:∑
i∈N

(
c(E)−M(ui − c)

)
≥ c(E). (8.12)

When the latter inequality does not hold, and the realization of the grand project

is desirable, then the present situation has to be extended with new agents k with a

utility function uk that fulfills M(uk − c) < c(E); that is, if the other agents only need

to invest an amount less than the cost of the grand project in order to let the new agent

k be interested in the grand project, then letting k participate makes the left-hand side

of (8.12) grow and thus benefits the realization of the grand project.

1A cooperative game is called additive if it has a characteristic function v : 2E → R that satisfies

v(S ∪ T ) = v(S) + v(T ) for each S, T ⊆ E with S ∩ T = ∅.
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Conditions for utility and cost functions ui and c are easily established for having the

inequality M(ui − c) < c(E), especially when c possesses a non-empty anti-core (that

is, there exists a cost distribution x ∈ RE with
∑

e∈E xe = c(E) and
∑

e∈P xe ≤ c(P )

for all P ⊆ E). A supermodular utility function and a submodular cost function may

not be sufficient, as the following example shows.2

Example 8.2.2. Let all utilities be equal to zero, i.e. let ui(P ) = 0 for all i ∈ N and

all P ⊆ E. Further, let the cost of project P ⊆ E be equal to the number of tasks in

P , i.e. let c(P ) = |P |. Observe that xe = 1 for all e ∈ E is an anti-core element of c.

Stable investments do not exist for this example, because of the following. The

constraint of LP problem (8.10) with P = ∅ yields
∑

e∈E q
i
e ≥ |E| for each agent

i ∈ N . Hence ∑
i∈N

M(ui − c) ≥
∑
i∈N

∑
e∈E

qie ≥ nc(E).

Since this is in contradiction with (8.11), we conclude that stable investments do not

exist for this example. ♦

8.3 Examples

In this section we provide two examples that illustrate how project support games can

be applied. The first one illustrates how stable investments can be found concretely,

and the second one describes a real-life application of project support games.

Example 8.3.1. Let N = {1, 2} be the set of agents and let E = {A,B} be the set of

tasks. Consider the following costs and utilities.

P c(P ) u1(P ) u2(P )

∅ 1 0 0

{A} 15 7 10

{B} 15 8 4

{A,B} 20 10 11

Table 8.1: The costs and utilities of Example 8.3.1.

First, we solve LP (8.10) with respect to agent 1:

minimize q1A + q1B

subject to 10− 20 + q1A + q1B ≥


0− 1 for P = ∅
7− 15 + q1A for P = {A}
8− 15 + q1B for P = {B}.

2Supermodular and submodular set functions are defined at the bottom of page 38.
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It can easily be verified that the solutions are described by q1A + q1B = 9 where q1A ≥ 3

and q1B ≥ 2. Take the solution q1A = 5 and q1B = 4.

The LP with respect to agent 2 is the following:

minimize q2A + q2B

subject to 11− 20 + q2A + q2B ≥


0− 1 for P = ∅
10− 15 + q2A for P = {A}
4− 15 + q2B for P = {B}.

Here, the solutions are given by q2A + q2B = 8 where q2A ≥ −2 and q2B ≥ 4. Take the

solution q2A = 3 and q2B = 5.

Since n = 2 it follows directly from (8.5) that t1A = q2A, etcetera. Since the sum over

all t’s is equal to 17, and the cost for {A,B} is 20, each t is raised by 0.75 according

to (8.4). Hence the following stable investments are obtained:

t =

(
t1A t2A
t1B t2B

)
=

(
3.75 5.75

5.75 4.75

)
. (8.13)

Observe that stable investments exist although the aggregate utility minus the cost

of project {A} is strictly higher than that of the grand project. However, project {A}
is not t-feasible, and neither agent 1 nor agent 2 can improve by deviating in order to

make {A} feasible. ♦

Example 8.3.2. Among the people in a local area, there is a growing interest in

having an own neighborhood center. In this center, associations have the opportunity

to employ various activities. The local authority decides to build this center only if

there is enough support among the associations. The building and maintenance costs

are discounted into monthly payments. Associations can rent the center from the local

authority.

Based on how much rent the associations are willing to pay for the center, the local

authority will decide whether to build the center, and if this is the case, which facilities

will be included. Consider the following facilities: a tavern, a meeting room, a music

hall, and sports facilities. The following parties are interested in renting the center: an

athletic club, a church community, a drama club, and a blues band.

Each party has a priority list of the facilities. The athletic club gives priority to

the sports facilities and the tavern, the church community will use the music hall and

the meeting room most frequently, the drama club all of them, and the blues band

the music hall and occasionally the tavern. These priorities are translated into utility

functions. It is intuitive to assume that these utilities are monotone, e.g. the athletic

club will also benefit from a meeting room.

The building and maintenance costs depend on which facilities the center will have.

In a situation like this, the cost function is normally submodular: building a center with

only a meeting room is relatively very expensive. Furthermore, if the local authority
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would like to take setup costs into account, then this is reflected in a cost function c

with c(∅) > 0.

Based on the utility and cost functions, the investments can be determined. An

investment tie corresponds to the investment proposed by party i in facility e. If the

investments are stable, then the local authority will build the whole center, and rent

it to the parties. The amount of rent paid by party i corresponds to the sum of

investments proposed by party i.

Observe that it could be the case that the total investment on a certain facility,

for instance the meeting room, may be negative even though the whole center is built.

In that case, the surplus of investments on the other facilities is used to finance the

additional cost of building the meeting room. ♦

8.4 Nash equilibria

In this section we show that stability is directly related to the notion of Nash equilibria

with respect to the grand project E.

For each agent i, consider ti = (tie)e∈E as an action of agent i. In order to define a

payoff function given an investment profile t, we have to model which t-feasible project

is executed. We assume here that c(∅) = 0, for otherwise t-feasible projects may not

exist. A t-feasible project P for which
(∑

i∈N ui(P ) − c(P )
)

is maximal will clearly

be of interest among the agents. Observe that there may be more than one candidate

that fulfills this property. Let the set of those candidates be defined as

P(t) = argmax
t-feasibleP

(∑
i∈N

ui(P )− c(P )
)
.

Let φ : 2E → N be a ranking function. Given an investment profile t, let the project

that is executed be defined as

P (t) = argmin
P∈P(t)

(
φ(P )

)
.

Each agent i receives the following payoff:

πi(t) = ui(P (t))−
∑

e∈P (t)

tie (8.14)

The investment profile t is called a Nash equilibrium if

πi(t) ≥ πi(t̂i, t−i)

for each agent i and investments t̂i, where t−i = (tj)j∈N\{i}. By (8.14) we know that

investment profile t is a Nash equilibrium if

ui(P (t))−
∑

e∈P (t)

tie ≥ ui
(
P (t̂i, t−i)

)
−
∑

e∈P (t̂i,t−i)

t̂ie ∀i, ∀t̂i. (8.15)
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It can easily be verified that a Nash equilibrium t has the following property:∑
i∈N

∑
e∈P (t)

tie = c(P (t)),

implying that the total investment of each agent i is equal to

c(P (t))−
∑
j 6=i

∑
e∈P (t)

tje. (8.16)

Therefore, (8.15) can be rewritten as

ui(P (t))− c(P (t)) +
∑
j 6=i

∑
e∈P (t)

tje ≥ ui
(
P (t̂i, t−i)

)
−
∑

e∈P (t̂i,t−i)

t̂ie ∀i, ∀t̂i.

For this condition, only deviations t̂i have to be considered that make P (t̂i, t−i) exactly

feasible, i.e. ∑
e∈P (t̂i,t−i)

t̂ie = c
(
P (t̂i, t−i)

)
−
∑
j 6=i

∑
e∈P (t̂i,t−i)

tje. (8.17)

Hence, t is a Nash equilibrium if

ui(P (t))−c(P (t))+
∑
j 6=i

∑
e∈P (t)

tje ≥ ui
(
P (t̂i, t−i)

)
−c
(
P (t̂i, t−i)

)
+
∑
j 6=i

∑
e∈P (t̂i,t−i)

tje ∀i, ∀t̂i.

(8.18)

Observe that t̂i only plays a role in determining the project P (t̂i, t−i), i.e. the project

that is executed when the agents play (t̂i, t−i). Therefore, for P (t) = E, condition

(8.18) is implied by (8.2), where all projects P ⊆ E are examined. We conclude that t

constitutes a Nash equilibrium in the case t is stable.

However, the other way round does not necessarily hold, because inequality (8.2)

applies to all projects P ⊆ E, instead of only the projects that are executed in case of

deviation. Consider for instance an agent i and a deviation t̂i. It may be the case that

(8.18) holds while

ui(P (t))− c(P (t)) +
∑
j 6=i

∑
e∈P (t)

tje < ui(P )− c(P ) +
∑
j 6=i

∑
e∈P

tje,

for some (t̂i, t−i)-feasible project P other than P (t̂i, t−i). In that case, (8.2) does not

hold.

8.5 Discussion

The presented model is inspired by a model of network formation proposed by Bloch

and Jackson (2007). In that model, the agents make investments in the links. Neg-

ative investments (i.e. demands) are also allowed. A link will be formed if the total
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investment is non-negative. They consider two settings. One where agents can only

invest in adjacent links, and one where agents can also make offers (i.e. non-negative

investments) to nonadjacent links.

In our model, agents do not form a network consisting of links, but a project con-

sisting of tasks. Each agent proposes an investment in each task, whereas in the model

by Bloch and Jackson (2007), each agent proposes an investment in each adjacent link.

This aspect can be implemented in our model in the following way. Let Ei ⊆ E be the

personal project of agent i ∈ N , and let E−i = E \Ei be the part of the grand project

in which i is not involved. Agent i is only allowed to invest in tasks of his personal

project. Each task in the grand project belongs to at least one of the personal projects,

i.e.
⋃

i∈N Ei = E.

Unfortunately, our analysis cannot easily be applied to the model with personal

projects. The main reason for this, is that the substitution of t with q does not yield

a decomposition of agent independent minimization problems (see (8.10)). Therefore,

a different approach is required to find stable investments in that case.

Another difference with the approach by Bloch and Jackson (2007) is the way how

costs are modeled. The link costs in the model by Bloch and Jackson (2007) are

included in the utilities. However, a link is only formed if the total investments in it

are non-negative. This is equivalent as defining the link costs to be 0. We explicitly

incorporate costs for executing projects. Observe that these costs are defined on the

set of projects. So, the proposed investments in an individual task do not have to

cover a specific cost. When we add such constraints to our model, a different analysis

is required to find stable investments.

Koster et al. (2003) propose a model that is also related to ours. They consider a

cost function that is defined on the set of tasks. Each agent has a personal project,

which has to be executed in order to receive a utility. Another model that is related to

ours is proposed by Tijs and Brânzei (2004). In their model, the cost function is also

defined on the set of tasks. Their utilities functions are similar to ours. Both Koster

et al. (2003) and Tijs and Brânzei (2004) study a cooperative game, that is extracted

from the model, for which they prove convexity.

In case we want to know whether investments can be found that are stable with

respect to a specific project T ⊂ E, our analysis can be applied to T instead of E. One

problem that occurs here is which t-feasible project will be executed. Similar to Koster

et al. (2003) and Tijs and Brânzei (2004), we define P (t) to be the project such that

(
∑

i∈N ui(P ) − c(P )) is maximal over all feasible projects P . Although this is very

reasonable, it could be the case that some agents still prefer other t-feasible projects.

In conclusion, unlike the other models, our model takes cost functions into account

that do not have to be linear. Further, not every specific task has to be financed directly,

that is, we do not restrict to
∑

i∈N tie ≥ c({e}) for each task e. For further research, it

is interesting to study our model more extensively, for instance, by enhancing it with

personal projects.



Chapter 9

Conclusion

In this chapter, we provide concluding remarks and recommendations for further re-

search. We discuss the results with respect to the unilateral connections model in

Section 9.1. Finally, we provide directions for further research in Section 9.2.

9.1 Unilateral connections model

In Chapters 2 to 7, we studied models of unilateral network formation. The basic

model that we built on, is proposed by Bala and Goyal (2000a). Each agent chooses a

set of own links, and all these links together define the outcome network which yields

a payoff for each agent. This payoff function consists of a cost and a profit part. Each

agent pays a certain cost for each formed link. As for the profits, several variants are

studied in the literature, which are characterized by the following settings:

Information flow (one-way or two-way) Let an observation path be a path via

which one agent observes another. In the one-way flow model, this path is directed

from the observed agent to the observer, and in the two-way flow model this path

is undirected.

Information decay The value of profits that agent i receives from observing j de-

pends on the distance dij , which is the number of links on the shortest observation

path. More specifically, agent i receives δdijvij , where δ is a decay factor (nor-

mally between 0 and 1).

Link reliability Each link (j, i) is reliable with probability pij . The value of profits

that i receives from observing j is multiplied by the probability that all links of

at least one observation path are reliable.

We identify a specific variant by either B&G-1 or B&G-2, optionally with the ad-

dition of a ‘d’ for decay and/or an ‘r’ for imperfect link reliability. For example, by
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B&G-2r we mean the two-way flow model with imperfectly reliable links and without

decay. Observe that we may identify these models by the corresponding classes of

payoff functions.

In Chapter 2, we extensively studied the B&G-1 model (that is, the one-way flow

model without decay and with perfectly reliable links). We examined the existence and

architecture of Nash network. The results are summarized in Table 2.1 on page 34.

Further, we introduced axiomatic payoff properties for these models. In Chapters 4

and 7 we proposed two frameworks of properties that cover the B&G-1 and the B&G-2

model respectively. These properties (except disjoint additivity) are oriented on local

actions, i.e. they compare two networks that are interchangeable by a local action.

We developed the frameworks in such a way that they are as general as possible,

and that they guarantee the existence of Nash networks. Observe that our main focus

in this thesis is on the existence rather than on the architecture of Nash networks.

Interestingly, the architecture of Nash networks often follows directly from the proofs

of existence (see Corollary 2.2.3 and Theorems 2.2.8, 4.3.1, and 7.2.3). Proper networks

(e.g. Figure 2.10) are essential in the one-way flow model and minimal networks (e.g.

Figure 7.2) in the two-way flow model.

In Table 9.1, we show which payoff properties that we introduced are satisfied by

which variants. Here, we divide the properties into four categories based on their

function. We leave out properties BT and BF since they are derived from and implied

by DE. In this table, link costs are owner-homogeneous and profits are heterogeneous.

B&G-1 B&G-1d B&G-1r B&G-2 B&G-2d B&G-2r

Treatment of different i-disjoint networks

DA X X X X X X
Addition/deletion of a link

NA X X
NAu X
Replacement within the same component

DE X X
RP X
Passive modification

BS X X
BG X X X
BGu X X X X X X

Table 9.1: Payoff properties satisfying the variants.

We used property DA (disjoint additivity) for both frameworks. It states that the

sum of payoffs of agent i with respect to two i-disjoint networks, is equal to i’s payoff

with respect to the union of both networks. In other words, this property excludes the

presence of externalities. It can easily be verified that DA is satisfied by all specific

models. Observe that DA can be split into the following two properties.
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Property DPA We say that a payoff function πi is disjoint superadditive (DPA for

short), if for each two networks g and g′, disjoint w.r.t. agent i, we have

πi(g + g′) ≥ πi(g) + πi(g
′).

Property DBA We say that a payoff function πi is disjoint subadditive (DBA for

short), if for each two networks g and g′, disjoint w.r.t. agent i, we have

πi(g + g′) ≤ πi(g) + πi(g
′).

We could have used DPA and DBA instead of DA for proving Theorems 4.3.1

and 7.2.3. However, we were unable to weaken DA to either disjoint super- or sub-

additivity. It would be interesting to examine whether the existence of Nash networks

can be proved in another way by using either DPA or DBA.

Properties NA and NAu are ‘natural’ for the one- respectively two-way flow model:

linking up with an agent who is already observed is not profitable (at least, when link

costs are positive). However, for models with decay this may be profitable, because by

an extra link, the distance of several observation paths may be shorter (less decay). For

models with imperfectly reliable links, an extra link may also be profitable, because it

creates additional observation paths.

We saw that property DE (downstream efficiency) is intuitive for the one-way flow

model without decay. By downstreaming a link, an agent still observes all agents whom

he already observed, and moreover, he may observe new agents. In the two-way flow

model, DE is trivially satisfied (at least, with owner-homogeneous link costs) because

by downstreaming a link, an agent observes exactly the same set of agents, i.e. all

agents who are active in that component. As an alternative, we proposed property

RP, which is demanding but necessary for our line of proof.

Designing properties that are based on replacements for the B&G-1d and the B&G-1r

model is difficult, because of two opposite effects: on the one hand, downstreaming a

link could be profitable by the argument we just mentioned; on the other hand, by

upstreaming a link, the directed path from at least one agent will be shortened, which

could be profitable in both the B&G-1d model (less decay), and the B&G-1r model

(higher reliability).

For the B&G-2d and the B&G-2r model, a replacement of (k, i) by (j, i) within the

same component is profitable (or beneficial) if j is located centrally in that component.

By this central location, i is connected to the other agents in that component via short

undirected paths, which is profitable in both the model with decay and with imperfectly

reliable links. For this reason, Nash networks are often characterized in the literature

as stars in the B&G-2d model. However, in the B&G-2r model, stars are usually not

supported as Nash networks, because agents rather prefer higher connected networks.

As for the properties that concern passive modifications (BS, BG, and BGu),

observe that in models with decay and/or imperfectly reliable links, higher connected
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networks are preferred over lower connected networks. Extra links that we called

‘redundant’ (for instance spokes) will be of value since they may create additional

observation paths (higher reliability) which may be shorter (less decay).

9.2 Further research

Let us conclude with several recommendations for further research.

In the literature on models of unilateral network formation, the concept of Nash

networks is a standard equilibrium concept. In Chapter 4, we proposed the concept

of local-Nash networks. Observe that the definition of equilibrium networks directly

follows from the action spaces that the agents have. It would be interesting to examine

other action spaces and the corresponding equilibrium networks.

Recently, several models are proposed in the literature where agents not only choose

which links they want to form, but also how much they invest in each link. It would

be interesting to study these models more extensively. In Chapter 8, we proposed a

model that is inspired by one of these models. In Section 8.5 we discussed how this

model is related to similar models, and what further research could be done.

Models of network formation can be enhanced by modeling the behavior of the

agents in more realistic ways. In the models that we studied in this thesis, agents are

assumed to be rational and myopic. In reality, persons or firms do not always behave

completely rational, and it is possible that they think a few of steps ahead. It would

be interesting to take these aspects into account.

In real social and economic networks, persons or firms do not always have complete

information. They may not know how much valuable information the others have, and

moreover, they may not even know who the others in the network are. In view of

applications, network formation under incomplete information is a real challenge to be

addressed in further studies.
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Notations and definitions

In Table 9.2, we provide an overview of notations that are used throughout this thesis

(except chapter 8). A list of definitions is provided in Table 9.3. For other definitions,

we refer to the Index on page 127.

Basics

N = {1, 2, . . . , n} set of agents

(j, i) link owned by i, depicted as j • −→ • i or j • −−−+ • i
g ⊆ N ×N where (i, i) 6∈ g, ∀i ∈ N network, defined as a set of links

Network information

Ni(g) = {j ∈ N : a directed path from j to i exists in g}
Nu

i (g) = {j ∈ N : an undirected path between j and i exists in g}
Nd

i (g) = {j ∈ N : (j, i) ∈ g}
Car(g), the carrier of g the set of active agents in g, being those agents who

are begin- or endpoints of a link in g

Network operations

g + g′ notation for g ∪ g
g + (j, i) notation for g ∪ {(j, i)}
g − g′ notation for g \ g′
g − (j, i) notation for g \ {(j, i)}
g−i network g minus all links owned by agent i

gj = {(k, `) : (k, `) ∈ g, and an undirected path between ` and j exists in g}
component of g where j is active

gj−i = (g−i)
j component of g−i where j is active

g−ij = gj−i + (j, i)

Payoffs

πi : G → R where G is the set of all

networks on N

payoff function for agent i

π = (πi)i∈N joint payoff function

cij cost of link (j, i)

cij = ci for all i, j ∈ N owner-homogeneous link costs

cij = c for all i, j ∈ N homogeneous link costs

vij profit that i receives from j

πi(g) =
∑

j∈Ni(g)
vij −

∑
j∈Nd

i (g) cij B&G-1 function for agent i

πi(g) =
∑

j∈Nu
i (g) vij −

∑
j∈Nd

i (g) cij B&G-2 function for agent i

Table 9.2: Notations
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Strategy

− global case −

(global) action (Global) action of agent i S ⊆ N \ {i}.
best (global) response S∗ is a best (global) response of

agent i w.r.t. πi and g

if πi
(
g−i + {(j, i) : j ∈ S∗}

)
≥ πi

(
g−i +

{(j, i) : j ∈ S}
)

for all (global) actions S.

(global-)Nash network Network g is a (global-)Nash

network

if Nd
i (g) is a best (global) response in g for

each i ∈ N .

strict (global-)Nash

network

Network g is a strict

(global-)Nash network

if Nd
i (g) is the unique best (global) re-

sponse in g for each i ∈ N .

− local case −

local action Local action of agent i in

network g

S ⊆ N \ {i} where |Nd
i (g) \ S| ≤ 1 and

|S \Nd
i (g)| ≤ 1.

best local response S∗ is a best local response of

agent i w.r.t. πi and g

if πi
(
g−i + {(j, i) : j ∈ S∗}

)
≥ πi

(
g−i +

{(j, i) : j ∈ S}
)

for all local actions S.

good local response S∗ is a good local response of

agent i w.r.t. πi and g

if πi
(
g−i + {(j, i) : j ∈ S∗}

)
≥ πi(g).

neutral local response S∗ is a neutral local response of

agent i w.r.t. πi and g

if πi
(
g−i + {(j, i) : j ∈ S∗}

)
= πi(g).

local-Nash network Network g is a local-Nash

network

if Nd
i (g) is a best local response in g for

each i ∈ N .

strict local-Nash

network

Network g is a strict local-Nash

network

if Nd
i (g) is the unique best local response

in g for each i ∈ N .

Link/network evaluations

profitability Link (j, i) ∈ g is profitable in g if πi(g) ≥ πi(g − (j, i)).

Link (j, i) 6∈ g is profitable in g if πi(g + (j, i)) ≥ πi(g).

beneficiality Link (j, i) is beneficial in g if πi(g−ij) ≥ πi(gj−i).

Network g is beneficial if all links in g are beneficial.

Network architectural properties

minimal Network g is minimal if for each (j, i) ∈ g an additional directed

path from j to i does not exist in g.

minimal

(undirected case)

Network g is minimal

(undirected case)

if for each (j, i) ∈ g an additional undi-

rected path between j and i does not exist

in g.

proper Network g is proper if each agent has at most one outgoing link.

semi-proper Network g is semi-proper if for all (i, j), (i, k) ∈ g, with j 6= k, link

(i, j) is contained in a cycle, and link (i, k)

is contained in a cycle.

cycle-proper Network g is cycle-proper if each agent on a cycle has exactly one

outgoing link.

Table 9.3: Definitions



Index

action, 12

best local response, 53, 72

best response, 12

good local response, 53, 72

local, 53

neutral local response, 72

agent, 3, 11

active, 11, 52

leaf, 27

observed, 5, 11

observed (undirected case), 93

representative, 41

root-, 42

top-, 54

algorithm

brute-force, 40

arrac, 42

rcr, 50

space complexity, 44

time complexity, 44

beneficiality, 16, 55, 94

best local response, 53, 72

best response, 12

Best Response Problem, 36, 50

big O notation, 44

bilateral connections model, 4

connected set, 41

connection number, 59

connections model, 4

cooperative game, 3, 109

cycle, 11

cycle network, 13

cycle-proper network, 33

decay, see information decay

decision problem, 36

directed path, 11

disjoint networks, 55

dynamic procedure, 75

endogenous network, 2

equilibrium network, 3

exogenous network, 2

feasible project, 106

game, 3

global action, see action

global-Nash network, see Nash network

good local response, 53, 72

grand project, 106

group, 41

heterogeneity, 12

homogeneity, 12

information decay, 5, 115

investment profile, 106

joint payoff function, 11

link, 1

beneficial, 55, 94

cost, 12, 93

own, 5, 12

profitable, 55, 94

spoke, 59, 104

local action, 53
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local-Nash network, 53

minimal network, 24, 62

modularity, 38

Nash equilibrium, 5, 112

Nash network, 5, 12

network, 1, 11

beneficial, 55, 95

component, 11, 52

cycle, 13

cycle-proper, 33

local-Nash, 53

minimal, 24, 62

minimal (undirected case), 93

Nash, 5, 12

proper, 17, 28, 54

semi-proper, 25

strict local-Nash, 62

strict Nash, 5, 12, 27

strongly connected, 24

network formation game, 3

neutral local response, 72

non-cooperative game, 3, 12

nonrival profits, 5

NP class, 37

NP-hard class, 37

observed agent, 5, 11

observed agent (undirected case), 93

one-way flow game, 13

one-way flow model, 5, 9

optimization problem, 36

orderly payoff function, 59

outdegree, 11

owner-homogeneity, 12

P class, 37

pairwise stability, 4

payoff, 112

payoff function, 5, 11, 53

B&G-1, 12, 36, 82

B&G-2, 50, 93

BF (beneficial farthest), 58

BG (beneficial growth), 59, 97

BG2 (beneficial growth, undir.), 98

BS (beneficial shrink), 59

BT (beneficial topagent), 58

DA (disjoint additivity), 55, 94

DBA (disjoint subadditivity), 117

DE (downstream efficiency), 42, 56

DPA (disjoint super additivity), 117

joint, 11

NA (naturality), 56, 95

NA2 (naturality, undirected case), 95

orderly, 59

RP (replacement), 98

payoff set function, 38

personal project, 114

procedure, 75

profit, 12, 93

profitability, 55, 94

project, 106

project support game, 106

proper network, 17, 28, 54

reliability of links, 5, 115

semi-proper network, 25

space complexity, 44

spoke, 59, 104

stable investments, 107

strict local-Nash network, 53

strict Nash network, 5, 12, 27

strongly connected network, 24

submodularity, 38

supermodularity, 38

task, 106

termination, 73, 75

time complexity, 44

topagent, 54

two-way flow model, 5, 49, 91

undirected path, 11

unilateral connections model, 4, 115



Samenvatting

Dit proefschrift behandelt wiskundige modellen van netwerkformatie. Hierbij gaat het

om zogenaamde endogene netwerken, dat wil zeggen, netwerken die worden gevormd

door individuen die vertegenwoordigd worden door knopen. Een voorbeeld hiervan is

een vriendschapsnetwerk, waarin een verbinding correspondeert met de vriendschap

tussen twee personen. De personen formeren zelf een vriendschapsnetwerk door onder-

linge vriendschappen te sluiten. Een ander voorbeeld is een handelsnetwerk, waarin

een verbinding een handelsrelatie vertegenwoordigt tussen twee handelaren.

We zijn gëınteresseerd in het formatieproces van endogene netwerken. Om dit te

onderzoeken, gebruiken we vereenvoudigde modellen uit de speltheorie. Deze modellen

worden netwerkformatiespelen (network formation games) genoemd. De agenten, die

corresponderen met de knopen, leggen verbindingen volgens een bepaalde procedure.

Aan het einde van deze procedure ontvangt elke agent een bepaalde uitbetaling aan de

hand van het uiteindelijk gevormde netwerk. Centrale onderzoeksvragen die worden

gesteld in dit proefschrift zijn: onder welke voorwaarden bestaan evenwichtsnetwerken

(d.w.z. netwerken waarbij geen één agent zich kan verbeteren) en indien ze bestaan,

welke topologie hebben ze? Verder onderzoeken we welke procedures tot evenwichts-

netwerken leiden.

Als basismodel in Hoofdstukken 2 tot en met 7 gebruiken we het unilaterale ver-

bindingsmodel (unilateral connections model), dat is ontwikkeld door Bala en Goyal

(2000a). De agenten formeren een netwerk door simultaan een verzameling gerichte

verbindingen te kiezen, waarbij elke agent alleen kan kiezen uit de verbindingen die

naar hem gericht zijn. Alle gekozen verbindingen vormen samen het uiteindelijke net-

werk. Op basis van dit netwerk ontvangt elke agent een bepaalde uitbetaling. Een

verzameling verbindingen die een agent kiest, wordt een actie genoemd. Een actie van

een bepaalde agent wordt een beste antwoord genoemd wanneer hij, gegeven de acties

van alle andere agenten, de hoogst mogelijke uitbetaling ontvangt. Een Nash netwerk is

een netwerk waarin iedere speler een beste antwoord speelt, en een strikt Nash netwerk

is een netwerk waarin iedere speler een uniek beste antwoord speelt.

In Hoofdstuk 2 bestuderen we het eenrichtingsstroommodel (one-way flow model),

dat wordt gekenmerkt door de volgende uitbetalingsfunctie: iedere agent betaalt be-

paalde kosten voor elke verbinding die hij heeft gelegd en ontvangt bepaalde opbreng-
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sten van andere agenten. Deze opbrengsten zijn niet rivaliserend, dat wil zeggen dat

wanneer een agent ze doorgeeft aan anderen, dan heeft hij er nog steeds beschikking

over. Als voorbeeld hiervan kan gedacht worden aan informatie. In het eenrichtings-

stroommodel ontvangt agent i opbrengsten van agent j als er een gericht pad is van j

naar i; de opbrengsten stromen als het ware naar i toe.

Hoofdstuk 2 richt zich op het bestaan en de topologie van Nash netwerken. We

leveren twee verschillende bewijzen voor het bestaan van Nash netwerken waarbij ver-

bindingen, die tot dezelfde eigenaar behoren, gelijke kosten hebben. Met een tegenvoor-

beeld laten we zien dat Nash netwerken niet altijd bestaan voor spelen met heterogene

verbindingskosten. We laten zien dat Nash netwerken wel bestaan onder bepaalde

condities. Tevens karakteriseren we de topologie van Nash netwerken en strikt Nash

netwerken voor homogene en heterogene verbindingskosten. Ook beschouwen we spelen

waarbij opbrengsten negatief kunnen zijn. Dit houdt in dat er bijvoorbeeld ongewenste

informatie door een netwerk kan circuleren. Voor deze spelen laten we zien dat efficiënte

netwerken (waarin de totale uitbetaling maximaal is) niet altijd Nash netwerken zijn.

Bovendien laten we zien dat Nash netwerken niet altijd bestaan, zelfs wanneer de ver-

bindingskosten homogeen zijn. We besluiten Hoofdstuk 2 met een overzicht van de

resultaten die betrekking hebben op het eenrichtingsstroommodel.

Het vinden van beste antwoorden in het eenrichtingsstroommodel wordt bestudeerd

in Hoofdstuk 3. We bewijzen dat dit probleem, genaamd het beste-antwoord-probleem

(best response problem), NP-moeilijk is, wat min of meer wil zeggen dat een oplossing

niet efficiënt te berekenen is. Hierbij gebruiken we een methode waarbij elke instantie

van het bekende NP-moeilijke probleem minimale verzamelingsdekking (minimum set

cover) vertaald kan worden naar een instantie van het beste-antwoord-probleem.

We introduceren een algoritme, genaamd arrac, om een beste antwoord te vin-

den en vergelijken dit met brute-force (brute kracht), een algoritme dat voor iedere

mogelijke actie de uitbetaling berekent om zodoende een beste antwoord eruit te kie-

zen. Algoritme arrac is gebaseerd op drie technieken om het mogelijk aantal acties te

reduceren. De tijdscomplexiteit van arrac is identiek aan die van brute-force. Ech-

ter, door middel van experimenten laten we zien dat arrac wel degelijk efficiënter is.

Tenslotte bestuderen we het beste antwoord probleem met betrekking tot het tweerich-

tingsstroommodel (two-way flow model). In dit model ontvangt agent i opbrengsten

van agent j als er een ongericht pad is tussen i en j. Aan de hand van een algoritme

laten we zien dat dit probleem in polynomiale tijd oplosbaar is.

In Hoofdstuk 4 wordt het unilaterale verbindingsmodel aangepast door de acties

van de agenten te beperken tot lokale acties, welke zijn: het toevoegen, verplaatsen

of verwijderen van één verbinding, of niets doen. Een lokaal-Nash netwerk wordt

gedefinieerd als een netwerk waarin niemand een lokale verbeteractie kan uitvoeren.

Een netwerk dat in Hoofdstuk 2 een Nash netwerk werd genoemd, wordt nu een globaal-

Nash netwerk genoemd.

We introduceren axiomatische uitbetalingseigenschappen die gëınspireerd zijn op

het eenrichtingsstroommodel. Voor uitbetalingsfuncties die aan enkele van deze ei-
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genschappen voldoen, bewijzen we dat lokaal-Nash netwerken die proper zijn, d.w.z.

waarin iedere agent hoogstens één uitgaande verbinding heeft, ook globaal-Nash zijn.

Daarna bewijzen we de existentie van lokaal-Nash netwerken voor uitbetalingsfuncties

die aan het raamwerk van eigenschappen voldoen. Met een voorbeeld tonen we aan

dat ook niet-propere netwerken lokaal-Nash kunnen zijn. We bewijzen dat de uitbeta-

lingseigenschappen onafhankelijk van elkaar zijn. Tenslotte relateren we het raamwerk

van uitbetalingseigenschappen aan het eenrichtingsstroommodel en geven we een aantal

voorbeelden van uitbetalingsfuncties die niet tot het eenrichtingsstroommodel behoren,

maar die wel voldoen aan alle eigenschappen.

Een dynamisch spel, waarin agenten om beurten lokale acties spelen, wordt bestu-

deerd in Hoofdstuk 5. Het spel begint met een willekeurig netwerk. Dan wordt er

willekeurig een agent geselecteerd, die een lokale actie mag spelen. Dit wordt herhaald

totdat een netwerk wordt bereikt dat niemand wil veranderen. Iedere agent krijgt een

uitbetaling op basis van dit uiteindelijke netwerk. De vraag die wordt gesteld in dit

hoofdstuk, is of het spel altijd eindigt, met andere woorden, of er een netwerk wordt

bereikt waarin niemand een lokale verbeteractie kan spelen. Om deze vraag te beant-

woorden, bestuderen we een procedure van willekeurig geselecteerde lokale acties. We

bewijzen dat deze procedure altijd eindigt als aan alle uitbetalingseigenschappen uit

Hoofdstuk 4 wordt voldaan. Het netwerk dat uiteindelijk wordt bereikt is lokaal-Nash

en tevens globaal-Nash.

In Hoofdstuk 6 worden de uitbetalingseigenschappen uit Hoofdstuk 4 gerelateerd aan

het eenrichtingsstroommodel. We geven een volledige karakterisering van de uitbeta-

lingsfuncties van het eenrichtingsstroommodel die voldoen aan alle eigenschappen uit

Hoofdstuk 4. Hierbij beschouwen we uitbetalingsfuncties waarbij verbindingskosten en

opbrengsten negatief mogen zijn. We laten zien dat een deelklasse van functies met he-

terogene verbindingskosten en opbrengsten aan de eigenschappen voldoet waarvoor we

het bestaan van lokaal-Nash netwerken hebben bewezen. Verder laten we zien dat elke

functie met homogene niet-negatieve verbindingskosten en heterogene niet-negatieve

opbrengsten voldoet aan alle eigenschappen.

Het tweerichtingsstroommodel (two-way flow model) wordt bestudeerd in Hoofd-

stuk 7. Het enige verschil met het eenrichtingsstroommodel is dat agent i opbrengsten

ontvangt van agent j als er een ongericht pad is tussen i en j. In Hoofdstuk 7 gebruiken

we dezelfde aanpak als in Hoofdstuk 4. Eerst bewijzen we dat voor uitbetalingsfuncties

die aan bepaalde axiomatische eigenschappen voldoen, minimale lokaal-Nash netwer-

ken ook globaal-Nash zijn. Met een minimaal netwerk bedoelen we dat de ongerichte

versie ervan geen enkele cykel bevat. Daarna bewijzen we de existentie van minimale

lokaal-Nash netwerken voor uitbetalingseigenschappen die aan een raamwerk van eigen-

schappen voldoen. We laten zien dat uitbetalingsfuncties waarbij de verbindingen, die

tot dezelfde eigenaar behoren, gelijke kosten hebben en waarbij de opbrengsten negatief

kunnen zijn, aan alle eigenschappen voldoen. Tevens geven we een aantal voorbeelden

van uitbetalingsfuncties die niet tot het tweerichtingsstroommodel behoren, maar die

wel voldoen aan alle eigenschappen.
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In Hoofdstuk 8 bestuderen we een model waarin de financiering van een groot project

door een groep agenten wordt onderzocht. Dit grote project bestaat uit een verzame-

ling taken, die bepaalde kosten met zich meebrengen. Omdat deze kosten aan elkaar

gerelateerd zijn, definiëren we een kostenfunctie op de verzameling projecten (hierbij is

een project een deelverzameling taken). Tevens levert het uitgevoerde project bepaalde

opbrengsten op voor iedere agent. De vraag is of de agenten bereid zijn te investeren

in het grote project. Om dit te onderzoeken, laten we elke agent per taak een investe-

ring voorstellen. Een project kan alleen worden uitgevoerd als de kosten ervan betaald

kunnen worden met de voorgestelde investeringen.

We geven condities waarvoor investeringsprofielen bestaan waarmee het grote pro-

ject betaald kan worden en waarbij niemand profiteert door af te wijken. Wanneer

aan deze condities wordt voldaan, worden de investeringen stabiel genoemd. We laten

zien hoe stabiliteit gerelateerd is aan het Nash evenwichtsconcept. Als voorbeeld van

ons model beschrijven we een situatie waarin onderzocht wordt of er voldoende animo

aanwezig is voor het bouwen van een buurtcentrum.

Alhoewel het model in hoofstuk 8 op het eerste zicht weinig met netwerkformatie

te maken lijkt te hebben, is het gebaseerd op een model van netwerkformatie dat is

onderzocht door Bloch en Jackson (2007). In dat model formeren de agenten een

netwerk door investeringen voor te stellen per verbinding.

In Hoofdstuk 9 besluiten we dit proefschrift met een bespreking van uitbreidingen

op het unilaterale verbindingsmodel en doen we aanbevelingen voor verder onderzoek.

In de literatuur is het unilaterale verbindingsmodel op de volgende twee manieren

uitgebreid. De eerste uitbreiding is dat opbrengsten die een agent ontvangt van een

andere agent in waarde afnemen met de lengte van het verbindingspad tussen hen

(gemeten in het aantal verbindingen). De tweede uitbreiding is dat elke verbinding

functioneert met een bepaalde betrouwbaarheidskans. We relateren de uitbetalingsei-

genschappen die we in Hoofdstukken 4 en 7 van dit proefschrift hebben voorgesteld

aan deze uitbreidingen.

We eindigen Hoofdstuk 9 met een aantal aanbevelingen voor verder onderzoek. In

dit proefschrift en in de meeste relevante literatuur wordt verondersteld dat de agenten

volledig rationeel handelen en bovendien wordt verondersteld dat ze volledige kennis

hebben van de omgeving. Voor verder onderzoek zou het interessant zijn om deze

aannames (deels) te laten vallen.
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