

ESSnet B ig Data

S p e c i f i c G r a n t A g r e e m e n t N o 2 (S G A - 2)
h t t p s : / / w e b g a t e . e c . e u r o p a . e u / f p f i s / m w i k i s / e s s n e t b i g d a t a

h t t p : / / w w w . c r o s - p o r t a l . e u /

Framework Partnership Agreement Number 11104.2015.006-2015.720

Specific Grant Agreement Number 11104.2016.010-2016.756

Wor k P ac kage 5

Mob i le Pho ne Da ta

D el ive rab le 5 . 4

Some IT e lemen ts for the use of mob i le ph one da ta in the
pr odu ct ion of o ff i c ia l s ta t is t ics

Version 2018-05-31

ESSnet co-ordinator:

 Peter Struijs (CBS, Netherlands)
 p.struijs@cbs.nl
 telephone : +31 45 570 7441
 mobile phone : +31 6 5248 7775

Prepared by: David Salgado (INE, Spain)

Marc Debusschere (Statistics Belgium, Belgium)
Ossi Nurmi, Pasi Piela (Tilastokeskus, Finland)

Elise Coudin, Benjamin Sakarovitch (INSEE, France)
Sandra Hadam, Markus Zwick (DESTATIS, Germany)

Roberta Radini, Tiziana Tuoto (ISTAT, Italy)
Martijn Tennekes (CBS, Netherlands)

Ciprian Alexandru, Bogdan Oancea (INSSE, Romania)
Elisa Esteban, Soledad Saldaña, Luis Sanguiao (INE, Spain)

Susan Williams (ONS, UK)

Contents

1 Introduction 1

2 Some IT infrastructures for analysing mobile phone data 3
2.1. At NSIs premises1 . 3
2.2. At MNOs premises . 4

2.2.1. Context: Working at Orange Labs premises 4
2.2.2. Orange Labs access to Orange data 4
2.2.3. Description of the infrastructure 5
2.2.4. Feedback and experience from the user point of view 8

3 mobloc - an R package for mobile location algorithms and tools 9
3.1. Introduction . 9
3.2. Setup location model parameters . 10
3.3. Loading artificial cellplan data . 12
3.4. Creating cell polygons . 13
3.5. Calculating relative signal strength probabilites 16

4 pestim - an R package to estimate population counts 19
4.1. Introduction . 19
4.2. Estimating the population at the initial time period 21
4.3. Examples . 23

4.3.1. Prior distribution of the hyperparameters 23
4.3.2. Estimation for a single cell . 25
4.3.3. Estimation for several cells . 28

4.4. Estimates along a sequence of time periods 33
4.5. Examples . 35

1Prepared in collaboration with Francesco Altarocca and Raffaello Martinelli.

III

Contents

4.6. Further developments . 37

A Implementation details and examples of combinations of priors for pestim 41
A.1. The mathematical model used to estimate the target population at initial

time . 41
A.2. The mathematical model used to estimate the target population for a

sequence of time instants . 42
A.3. Technical comments on the functions . 44
A.4. fu ' Unif(um, uM), fv ' Unif(Nm, NM) 47
A.5. fu ' Unif(um, uM), fv ' triang(Nm, NM , N

Reg) 50
A.6. fu ' Unif(um, uM), fv ' Gamma(α+ 1, N

Reg

α) 52
A.7. fu ' Triang(um, uM , u

∗), fv ' Unif(Nm, NM) 54
A.8. fu ' Triang(um, uM , u

∗), fv ' Triang(Nm, NM , N
Reg) 56

A.9. fu ' Triang(um, uM , u
∗), fv ' Gamma(a+ 1, N

Reg

a) 58

B Documentation manual of package pestim 61

Bibliography 93

IV

1

Introduction

This deliverable introduces elements for the IT infrastructure necessary to access,
store, and process mobile phone data for the production of official statistics. According
to the integral approach of the whole ESSnet on Big Data, the forthcoming contents are
based upon the concrete experience with actual mobile phone data compiled during the
first part of the present project. Therefore, while offering a bottom-up approach, this is
clearly conditioned on the success of accessing/using data for our purposes.

In this sense, it is convenient to have in mind an overall description of the whole
production process with mobile phone data depicted in figure 1.1 (see WP5.3 (2018)).
Following the code of colours, we see that we cannot directly use nor access raw telecom-
munication data. Statistical microdata can be used in highly limited conditions only in
the form of CDRs by INSEE, Istat, and CBS, which can then be aggregated to produce
aggregated data, which other partners receive with no choice to participate in their
compilation.

It is immediate to conclude how the data access issue shows clear consequences on
the needs for infrastructure. In no case in the current research process a partner NSI has
needed to develop a specific IT infrastructure to store or process their mobile phone data,
whatever their level of aggregation is. At most, in the case of the fruitful collaboration
between Orange Labs and INSEE, the latter has been able to use an in-situ platform to
access and process CDRs.

Accordingly, the scope of the present document is necessarily limited. The IT tools
developed for the present project do not currently differ much from traditional software
tools in an NSI because our compiled data are mostly aggregated. The document presents
three main chapters. Firstly, taking advantage of the collaboration between Orange
Labs and INSEE, we include in chapter 2 a brief description of the IT infrastructure to
process mobile phone data for statistical purposes. Secondly, in chapter 3 we provide a

1

1 Introduction

Raw Telco Data

Preprocessing

Statistical MicroData

Aggregation

Aggregated Data

Inference

Product

Figure 1.1 Schematic representation of the production process with mobile phone data.

description of the R package called mobloc for the location of mobile devices according
to our proposals in WP5.3 (2018). Thirdly, in chapter 4 we also provide a description of
the R package called pestim implementing the hierarchical model introduced in the
same preceding deliverable.

2

2

Some IT infrastructures for analysing mobile phone
data

2.1. At NSIs premises1

Although the access conditions have prevented us from fully processing microdata,
in some cases we have been able to receive a set of Call Detail Records (CDRs) at the
office. Here we exemplify an IT infrastructure to process these data with the example of
ISTAT.

In order to manage such an amount of data, Istat acquired the Cloudera Enterprise
5.8 platform and completed the setup of the Big Data in early 2015. The cluster is com-
posed of 8 nodes. Each node has 6 drives of 1.2Tb capacity, 128Gb of RAM, 32 or 16 CPU
cores. The connection between nodes has a high performance and 20Gb/s speed.

The platform includes the standard Hadoop framework needed to store and process
data, Spark as general engine for large-scale data processing, Impala that is a native
analytic database, Hue as Analytics Workbench, Cloudera Manager and Security, which
are Cloudera tools, respectively, for Administration and Advanced access control.

In Istat, other interesting uses of the Big Data platform are: the offloading of produc-
tion databases (historical data storing), heavy processing of data (scanner data analysis),
big data staging (agriculture census satellite images).

This new working paradigm requires acquiring and developing some new skills. In
addition to more technical skills, it is necessary to consider algorithms and processing
flows in a completely new way. This effort is necessary in order to open new approaches

1Prepared in collaboration with Francesco Altarocca and Raffaello Martinelli.

3

2 Some IT infrastructures for analysing mobile phone data

to data processing and answer to more challenging questions.

As far as CDRs are concerned, each record contains information about: user id, start
and end cell of the caller, date and time of the call, the type of event (SMS or voice call).
The number of CDRs in a given period of time can be very large: for example, one MNO
collects about 280 million of records in 38 days for a single Italian region.

Under a legal agreement, the MNO transfers CDR data files using a secure channel
to an external area shared with Istat. The files are then acquired by Istat systems and
are deleted from the exposed area. At this stage, data are in the Big Data cluster but
they are not loaded in the HDFS filesystem yet. CDRs are transformed and grouped in a
convenient way and subsequently loaded in the HDFS filesystem. From this point of the
workflow, it is possible to use Big Data tools environment to process data.

Tools like Impala or Hive make it possible to manage files into structures that allow
SQL-like querying. The first elaboration is the extraction of the needed columns and
then the identification and deletion of duplicate records, this process is named “Data
Collection”. The subsequent step consists in associating a LAU to each record based
on geo-localized information of the antenna sector present in the start cell field via BSA
(this process is named “Join CDR and BSA”). The last step is the creation of some
aggregates using Impala, according to the operations described by the pseudo-code in
the previous paragraphs. These data are aggregated by LAU and time slots (e.g. daytime
and nighttime population).

From now on, aggregated and original data are available to scientists for modeling
and for further elaborations. These activities are often better elaborated using high level
tools such as Python, R or SAS and the results archived in Hadoop.

2.2. At MNOs premises

2.2.1. Context: Working at Orange Labs premises

2.2.2. Orange Labs access to Orange data

Orange is the main MNO in France, with the largest market share and historically
the largest coverage of the country. The R&D of the company is developed in in a large
structure called Orange Labs.

Orange collects and stores many sorts of data. Yet Orange Labs does not have a direct
access to the data generated on the mobile network. So the procedure is that Orange
Labs teams make a request for a specific data flow to be opened, meaning a determined

4

2.2 At MNOs premises

Figure 2.1 The workflow elaboration at Istat.

time frame of data collection for instance. Then the data is stored and processed on
platform dedicated to R&D, that we describe below, and no production process runs on it.

The same type of data that is exploited for R&D is also the raw material for some
commercial entities within the Orange group. FluxVision sells estimates of present
population attending some events or estimation of flows between cities for some studies.

2.2.2.1. INSEE access to Orange Labs data

A convention between Eurostat, INSEE and Sense from Orange Labs, granted access
to a specific dataset of CDR from 2007 for research purposes. This allowed the exploita-
tion of this large record (more than 2To) of individual data by INSEE researchers. Yet all
the work has only been conducted within Orange Labs premises, without any sort of
remote access. This is why the infrastructure here described is not in place at INSEE but
belongs to Orange Labs.

2.2.3. Description of the infrastructure

Orange Labs set up an Hadoop cluster for big data processing. This infrastructure
aims at integrating as many technologies from the Big Data ecosystem as possible.

2.2.3.1. Architecture

The architecture is represented in figure 2.2.

5

2 Some IT infrastructures for analysing mobile phone data

2.2.3.2. Specifications

Hardware
The Hadoop ecosystem relies on a VMWARE cluster for SAN storage. According to the
interview technicians this comes from the iterative process of building the infrastructure
more than clear choice of an adapted technology for large volumes within the Hadoop
framework.

Hadoop
Orange Labs makes no use of a distribution like Cloudera or HortonWorks. Installations
are run from sources or binaries of the different projects, as Hadoop Apache for instance.
There are around a hundred nodes on the cluster with Yarn as a dependency manager.

The virtual machines have 24 Go for RAM on average. The operating system is a
Centos distribution that is costly to maintain evolving so as to ensure the compatibility
with every application of the Hadoop framework.

The total space in the HDFS cluster, the distributed file system, is around 3,5 Po. The
access is secured through Kerberos authentication. The goal is to limit the access rights
of each user (there are around 300 users) to the data according to the “need-to-know”
principle. This is particularly important since the individual data that is stored is highly
re-identifiable and many people from diverse teams (sociologists, ergonomists, commu-
nication experts, IT profiles. . .) have access to the HDFS.

Because so many projects are led on this platform, the choice was made to impose
static quotas of RAM and CPU at the level of departments.

So as to offer a personal storage space on HDFS, HUE (Hadoop User Experience) has
been installed. It allows to upload scripts or additional data (from official statistics for
instance) and to download outputs like aggregates. There is no a priori control of the
outputs.

To ensure both flexibility for the user and a fair level of traceability, Apache Gua-
camole gives access with SSH or RDP (remote desktop control) to a remote desktop
recording the sessions and dealing with the authentication. It is through this interface
that shells can be opened for programing and scripts that were uploaded in HDFS thanks
to HUE can be launched.

Actually these office environments make use of the same distribution of the operating
system. That allows for an easy execution of some solutions drivers like Spark. This
environment also provides an HDFS client to give access to the data.

6

2.2 At MNOs premises

Figure 2.2 Architecture of Orange Labs big data platform

7

2 Some IT infrastructures for analysing mobile phone data

2.2.4. Feedback and experience from the user point of view

2.2.4.1. Ergonomy

Orange Labs infrastructure is very adapted to the manipulation of 5 months of CDR,
for not too complicated operations computing times are quite short compared to the
billions lines in the record. Yet one may need time to be familiar with the access to
the platform. The double access through HUE and Guacamole, each offering different
features makes it a bit heavy for programming and debugging.

2.2.4.2. Keeping the software versions up-to-date

Another drawback of this solution is that maintaining the softwares up-to-date seems
to require many efforts. Updating the versions for Spark or Python for instance has
proven to take several months. In the context of the Big Data solutions evolving a very
high pace one may find frustrating not to be able to enjoy the new features that are
regularly released.

8

3

mobloc - an R package for mobile location
algorithms and tools

3.1. Introduction

Data collected from the mobile phone network do not typically contain the exact
geographic location of the logged events. Instead, only the id number of the site (which
is the construction that contains one or more antennae, e.g. a cell tower) and the cell
(antenna) are included.

The mobloc package contains a set of tools to approximate the location of mobile
phone devices. For this approximation, the signal strength of the cells are modelled.
Also, the fact than cells often overlap is taken into account.

Besides the mobile phone network data (Call Detail Records or signalling data), the
cellplan is needed for the estimation of geographic locations. It contains the metadata
of the cells. The number of variables that are included may vary. The more variables
included, the better. The only required variables are the latitude and longitude of the
cells. Other useful variables are: height, (horizontal) tilt, direction, horizontal beam
width, vertical beam width, and the type of cell. These variables are used in ‘mobloc‘ to
approxiamate the location of mobile phone devices. There may be other, more advanced,
variables that are useful to estimate the geographic location, such as Timing Advance.
However, there are no methods implemented yet to use these variables.

The methods used in this package are described in Tennekes (2018), which is recom-
mended to read first.

#library(mobloc)
library(devtools)
load_all()

9

3 mobloc - an R package for mobile location algorithms and tools

3.2. Setup location model parameters

The first step to apply the approximate the geographic locations, is to determine the
model parameters. The default parameters can be loaded with the function
location model parameters. The result is a standard list:
param_default <- location_model_parameters()
str(param_default)
#> List of 13
#> $ db0_tower : num -45
#> $ db0_small : num -60
#> $ azim_min3dB : num 65
#> $ azim_dB_back : num -30
#> $ elev_min3dB : num 9
#> $ elev_dB_back : num -30
#> $ db_mid : num -92.5
#> $ db_width : num 5
#> $ poly_shape : chr "oval"
#> $ max_range : num 10000
#> $ max_range_small : num 100
#> $ area_expension : num 4
#> $ max_overlapping_cells: num 20
#> - attr(*, "class")= chr "location_model_parameters"

A short description of the parameters is provided in the table below. Some of these
parameters are already discussed in Tennekes (2018). The first set of eight parameters
are used to model the signal strength. The second set of five parameters are used to
determine the coverage area. The parameters will be explained in more detail when
needed.

Parameter Description (related to signal strength)
db0 tower Signal strength at 1 meter from cell (S0 in Tennekes (2018)) for normal cells
db0 small Signal strength at 1 meter from cell (S0 in Tennekes (2018)) for small cells
azim min3dB Horizontal beam width γj in Tennekes (2018))
azim dB back Signal strength at the back of the cell in the azimuth plane
elev min3dB Vertical beam width θj in Tennekes (2018))
elev dB back Signal strength at the back of the cell in the elevation plane
db mid Midpoint of the logistic transformation (Smid in Tennekes (2018))
db width Width of the logistic transformation (Swidth in Tennekes (2018))

The mobloc package contains a tool in which the first set of eight parameters can be
tuned. This tool is started as follows:
param_current <- cell_modelling_tool(param_default)

All parameter values that are set with the interactive tool are silently returned
by cell modelling tool, and in this example assigned to param current. The
function update model parameters can also be used to change parameters.

10

3.2 Setup location model parameters

Parameter Description (related to coverage area)
poly shape Baisc shape of the cell coverage area, one of pie, oval , Voronoi
max range Maximum range of normal cells
max range small Maximum range of small cells
area expension Expension factor of cell areas used to allow overlap
max overlapping cells Maximum amount of cells that are overlapping each other

Figure 3.1 Cell modelling tool.

The top left box shows the settings of a cell which should be contained in the cellplan,
namely, the height, the horizontal tilt (βj in Tennekes (2018)), and whether it is a small
cell (i.e. omnidirectional). If these variables are not available, not all tools from the
mobloc package can be used.

The top right plot shows the top view of the signal strength of the cell. If *small cell*
is unticked, than the azimuth direction (αj in Tennekes (2018)) is east.

11

3 mobloc - an R package for mobile location algorithms and tools

The next input boxes on the leftside of the screen configure the cells. These param-
eters are often contained in the cellplan. If not, the default parameters can be used.
The first parameter is db0 tower or do0 small depending on whether the *small cell*
checkbox is ticked. Notice that different default settings are used (-45dBm for normal
cells, and -60dBm for small cells), since cells contained in cell towers and on rooftop are
often much stronger than small cells. The top left plot below the heatmap shows the
signal loss as a function of the distance (see equation (4) in Tennekes (2018)).

The next two input boxes contain the -3dB angles and dB back values for both the
horizontal (azimuth) and vertical (elevation) planes. The radiation area of a cell can be
seen as a three dimensional bulb. In the main direction (e.g. the direction in which the
cell radiates) there is no loss in signal strength, irrespective of the distance. However,
at a certain offset, there is signal loss. The -3dB angle is the angle at which the signal is
halved. These angles (both for the horizontal and vertical plane) are usually contained in
the cellplan. The dB back points are signal loss ratios between the front and the back of
the cell. The two plots the the right bottom of the screen illustrate the radiation pattern
in the horizontal/azimuth plane the the vertical/elevation plane. The black contour
lines indicate the signal loss as a function of the offset angle. The red points are the -3dB
points. These radiation plots can also be generated directly in R:

radiation_plot(beam_width = 65, db_back = -30)
radiation_plot(type = "e", db_back = -30, beam_width = 9)

The output type sets the type of radiation plot that is shown in the heatmap. dBm
means the absolute signal strength value, and the likelihood the likelihood of connection,
given the abolute signal strength values.

The transformation from absolute signal strength values to the likelood values is
achieved by applying a logistic function, which is parameterized by dm mid (Smid in
Tennekes (2018)) and db width (Swidth in Tennekes (2018)). The reason to apply such
a transformation is that the probability of connection not only depends on the signal
strength, but also on load balancing. For load balancing, the tails of the distribution are
less important, e.g. whether a signal is very good (say -80dBm) or superb (say -70 dBm)
is less important than the availability of that cell. The transformation function is plotted
in the top right chart below the heatmap. The transformation is defined in equations (6)
and (7) of Tennekes (2018).

3.3. Loading artificial cellplan data

When the parameters have been set, the model can be applied to cellplan data. To
illustrate the model, we included artificial data to this package. This data can be loaded
as follows:
data("ZL_cellplan", "ZL_land", "ZL_elevation")

12

3.4 Creating cell polygons

It is artifical cellplan data from the NUTS3 region Zuid-Limburg, the most southern
part of the Netherlands, which is roughly 30 by 30 kilometres large.

The object ZL cellplan is an sf object (see packge sf) that contains all the geop-
graphic locations of the cells and the metadata.
head(ZL_cellplan)
#> Simple feature collection with 6 features and 9 fields
#> geometry type: POINT
#> dimension: XY
#> bbox: xmin: 176270.6 ymin: 317988.3 xmax: 189389.9 ymax: 335854.1
#> epsg (SRID): 28992
#> proj4string: +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel +towgs84=565.2369,50.0087,465.658,-0.406857,0.350733,-1.87035,4.0812 +units=m +no_defs
#> Cell_name x y z direction tilt beam_h beam_v small
#> 1 6d52a 176270.6 317988.3 104.23212 18 8 62 14.0 FALSE
#> 2 6d52b 176270.6 317988.3 104.23212 138 6 62 14.0 FALSE
#> 3 6d52c 176270.6 317988.3 104.23212 258 6 62 14.0 FALSE
#> 4 5e56a 189389.9 335854.1 78.89991 312 6 65 7.2 FALSE
#> 5 5e56b 189389.9 335854.1 78.89991 112 6 65 7.2 FALSE
#> 6 5e56c 189389.9 335854.1 78.89991 212 5 65 7.2 FALSE
#> geometry
#> 1 POINT (176270.6 317988.3)
#> 2 POINT (176270.6 317988.3)
#> 3 POINT (176270.6 317988.3)
#> 4 POINT (189389.9 335854.1)
#> 5 POINT (189389.9 335854.1)
#> 6 POINT (189389.9 335854.1)

The object ZL land is a large multipolygon that defines the area. The object ZL elevation
is a raster object that contains the elevation heigths at 100 by 100 metre detail.

These example data can be plot with the tmap package:
library(tmap)
tmap_mode("view")
qtm(ZL_elevation) + qtm(ZL_land, fill=NULL) + qtm(ZL_cellplan)

The corresponding bounding box of Zuid-Limburg is created as follows.
library(sf)
#> Linking to GEOS 3.5.1, GDAL 2.2.1, proj.4 4.9.3
ZL_bbox <- st_bbox(c(xmin = 172700, ymin = 306800, xmax = 204800, ymax = 342700), crs = st_crs(28992))

3.4. Creating cell polygons

The first step is to create a polygon for each cell. Polygons are created with the
function create cellplan polygons. We can create three types of polygons: pie,
oval (pie with round edges), or Voronoi. The polygons defines the overall coverage
area of a cell. However, the signal strength may vary within this coverage area. It is
recommended to define the polygons are large as possible. However, the computation
time increases a lot when the polygons are too large, especially when there is much
overlap.

First, let us illustrate a Voronoi tessalation. For this we create a new parameter list,
where we only adjust the polygon shape.

13

3 mobloc - an R package for mobile location algorithms and tools

Figure 3.2 A large multipolygon.

param_voronoi <- update_model_parameters(param_current, poly_shape = "Voronoi")
ZL_voronoi <- create_cellplan_polygons(ZL_cellplan, ZL_land, ZL_bbox,
param = param_voronoi)

The sf object ZL voronoi contains polygons for every cell. When cells are direc-
tional, the centroids for which the Voronoi polygons are generated, are shifted 100 meters
in the direction of radiation. The major advantage of this adjustment to the Voronoi
algorithm is achieved when there are multiple cells per site, typically 120 degrees apart.
The result is that due to the shifted geographic locations, a Voronoi polygon is created
for each cell.

The result can be visualized and inspected as follows.

qtm(ZL_voronoi) + qtm(ZL_cellplan)

As discussed in Tennekes (2018), there are a couple of downsides to the Voronoi
tesselation. The most important one is that in reality, cells overlap in order to make to
mobile phone network robust and dynamic. When a cell tower is out of order, or when
the capacity is reached, other nearby cells can take over the connections.

In the following line of code, we create polygons that have a shape of an oval. The

14

3.4 Creating cell polygons

Figure 3.3 Voronoi polygons.

size is upper bounded by the parameters max range and max range small for normal
and small cells respectively. The sizes of the polygons are determined as follows. Under
the hood, a Voronoi tesselation is generated, just like we did before. The sizes of those
Voronoi polygons times the parameter area expension determine the sizes of the
polygons. The result is that cells in urban areas have smaller coverage areas, but still
overlap each other.

ZL_poly <- create_cellplan_polygons(ZL_cellplan, ZL_land, ZL_bbox, param = param_current)
qtm(ZL_poly) + qtm(ZL_cellplan)

Recall that each of these polygons only determines the coverage area of the corre-
sponding cell, but not the signal strength. At this stage, the shape of the polygons is not
very important, as long as it covers the area for which the signal strength is expected to
by high.

15

3 mobloc - an R package for mobile location algorithms and tools

Figure 3.4 Ovals.

3.5. Calculating relative signal strength probabilites

In the final stage, the relative signal strength probabilities are calculated. See equation
(1) in Tennekes (2018). These are the probabilities of presence at a certain grid cell (say
100 by 100 metres) given the id of the logged cell. Recall that these probabilities depend
on the relative signal strengths (see s(i, j) in equation (6) in Tennekes (2018)) of the
logged cell as well as the cells that also have coverage at the corresponding location.

The function to calculate these relative signal strength probabilities, called rasterize cellplan,
supports parallel computing. The mobloc package contains a couple of functions to
manage the parallel backend:

current_cluster()
No cluster defined.
start_cluster(4)
Cluster with 4 nodes created.
current_cluster()
Cluster with 4 nodes found.
stop_cluster()
Cluster with 4 nodes stopped.

16

3.5 Calculating relative signal strength probabilites

The following code chunk will calculate the relative signal strength probabilities.
It returns a data.frame which consists of the following variables: Cell name, rid
(raster cell id), p (probabilities), s (relative signal strength), dist the distance between
the cell and the raster cell, and db the signal strength in dBm.
ZL_raster <- create_raster(ZL_bbox)
ZL_prob <- rasterize_cellplan(cp = ZL_cellplan, cp_poly = ZL_poly, raster = ZL_raster,
elevation = ZL_elevation, param = param_current)

The result can be visualized using cell inspection tool.
cell_inspection_tool(ZL_cellplan, ZL_poly, ZL_raster, ZL_prob, param_current)

Figure 3.5 Cell inspection tool.

17

4

pestim - an R package to estimate population counts

4.1. Introduction

We have developed an R package called pestim (Salgado et al. (2018)) to implement
the hierarchical model to estimate the population counts of different territorial cells
combining the information from aggregated mobile phone data and official data (a
population register or survey data), both at a given time instant and along a sequence
of time periods. The theoretical model implemented by the pestim package follows
the ecological sampling techniques to estimate population counts (see e.g. Manly and
Navarro-Alberto (2014) and Royle and Dorazio (2014)). The complete methodology is
described in WP5.3 (2018) and it follows a Bayesian approach to estimate population
counts.

In a nutshell, the proposed model rests on two working assumptions:

Given that mobile phone data and official data operate at different time scales, we
assume that there exists an initial time instant in which we can equate population
figures from both sources.

The mobility patterns of individuals do not depend on the mobile network operator
which they are subscribed to.

The inference of the population counts from mobile phone data and official data is
achieved in a two step process:

At a given time instant t0 both mobile phone and official data are used to infer the
population counts in each territorial cell;

At later moments, t1, t2, ... transition probabilities from cell to cell are inferred from
mobile phone data and then used to estimate the spatial and time evolution of the
population.

19

4 pestim - an R package to estimate population counts

Accordingly we will illustrate how this two-step process has been implemented in
the package, which is structured on three layers of functions:

Auxiliary functions, providing computation of mathematical functions such as the
ratio of two beta functions, the confluent hypergeometric function, an optimization
routine for a concrete probability distribution, etc. Examples of these functions are
ratioBeta, kummer, Phi, modeLambda;

Distribution-related functions, providing computation regarding the generation
of random deviates according to different probability distributions comprising
both priors, posteriors, and the generation of parameter specifications for these
distributions. Examples of these functions are dtriang, rtriang, ptriang,
qtriang, dlambda, rlambda, rmatProb, rN0, rNt, rNtcondN0, rg,
rp, alphaPrior, genAlpha, genUV.

Estimation-related functions, providing computation of estimates based upon the
populations generated with the preceding functions. Examples of these functions
are postN0, postNt, postNtcondN0.

The package is freely available under the GPL3 and EUPL licenses at the following ad-
dress: https://github.com/MobilePhoneESSnetBigData/pestim. It requires
at least R version 3.3.0, but upgrading R to the newest version is highly recommended.
It can be installed using install github function from devtools package:
library(devtools)
install_github("MobilePhoneESSnetBigData/pestim", buildVignettes = TRUE)

Since it contains C++ code, the user needs to install Rtools under Windows en-
vironment or to have a C++ compiler under Linux or Mac OS X environments. We
also provide Windows binaries and Mac OS X binaries for this package that can be
downloaded from:

https://github.com/MobilePhoneESSnetBigData/Estimation_Population/
blob/master/pestim_0.1.0.zip for the Windows binary package.

https://github.com/MobilePhoneESSnetBigData/Estimation_Population/
blob/master/pestim_0.1.0.tgz for the Mac OS X binary package.

These binary packages can be downloaded and installed with the standard command
install.package("pestim_0.1.0.zip")

for Windows (but in this case the user should also install all the dependencies).
The functions included in pestim package are computationally intensive and we

recommend to be installed on a high performance workstation.
The documentation of the pestim package is available as:

20

https://github.com/MobilePhoneESSnetBigData/pestim
https://github.com/MobilePhoneESSnetBigData/Estimation_Population/blob/master/pestim_0.1.0.zip
https://github.com/MobilePhoneESSnetBigData/Estimation_Population/blob/master/pestim_0.1.0.zip
https://github.com/MobilePhoneESSnetBigData/Estimation_Population/blob/master/pestim_0.1.0.tgz
https://github.com/MobilePhoneESSnetBigData/Estimation_Population/blob/master/pestim_0.1.0.tgz

4.2 Estimating the population at the initial time period

a package vignette.

a reference Manual, available at https://github.com/MobilePhoneESSnetBigData/
pestim/blob/master/doc/pestim_Reference_Manual.pdf.

usual R help available for each function included in this package.

a presentation of the package available at https://github.com/MobilePhoneESSnetBigData/
Estimation_Population/blob/master/pestim-presentation.pdf.

4.2. Estimating the population at the initial time period

In this section we will give a short description of the theoretical model underlying
the pestim R package for the estimation of the population counts at a given time mo-
ment. More detailed documents about this model can be downloaded from https:
//github.com/MobilePhoneESSnetBigData/Estimation_Population.

For the population count estimation at the initial time period, a first input of the
model is NMNO = (NMNO

1 , . . . , NMNO
I)T which represents the population counts re-

ported by the mobile network operator in each territorial cell i ∈ I = {1, . . . , I} (i.e. the
aggregated mobile phone data).

The second input of the model is the official population counts in each territorial
cell denoted by NReg = (N

Reg
1 , . . . , N

Reg
I)T . These official population counts could come

from administrative data sources or from statistical surveys. Notice that both pieces of
information are considered as data inputs into the estimation process here. Both counts
refer to nonoverlapping territorial cells.

The package pestim implements a function to estimate the actual population counts
N = (N1, . . . , NI)

T combining both data sources by computing the posterior probability
distribution P

(
N|NMNO;NReg) and finding the corresponding posterior mean, median,

and mode as possible estimates to be chosen by the user. Notice that this posterior
probability distribution can also be used to assess the uncertainty in the output estimates
(this will be dealt with in the deliverable 5.5 on quality). This process can be represented
schematically as shown in figure 4.1.

The main idea of the model is to emulate the ecological sampling setting in which the
number of detected individuals in each cell follows a binomial distribution Bin(Ni, pi)
whose parameter Ni is the target of the model (being assigned a weakly informative
prior) and the detection probability pi (also assigned a weakly informative prior based
upon both data sources).

21

https://github.com/MobilePhoneESSnetBigData/pestim/blob/master/doc/pestim_Reference_Manual.pdf
https://github.com/MobilePhoneESSnetBigData/pestim/blob/master/doc/pestim_Reference_Manual.pdf
https://github.com/MobilePhoneESSnetBigData/Estimation_Population/blob/master/pestim-presentation.pdf
https://github.com/MobilePhoneESSnetBigData/Estimation_Population/blob/master/pestim-presentation.pdf
https://github.com/MobilePhoneESSnetBigData/Estimation_Population
https://github.com/MobilePhoneESSnetBigData/Estimation_Population

4 pestim - an R package to estimate population counts

Computer Tool

(NMNO
1 , NREG

1)

(NMNO
2 , NREG

2)
...

(NMNO
I , NREG

I)

P
(
N|NMNO; NREG

)

fu1 , fv1 , fλ1
. . . fuI , fvI , fλI

Figure 4.1 The diagram of the process for population estimation using mobile phone and official
population data at the initial time period t0.

In our case, if we have Ni individuals in cell i and we have an independent detec-
tion probability pi for each individual through the mobile telecommunication network,
then we will detect NMNO

i individuals according to the network naturally following a
binomial distribution.

The parameters Ni can be modeled as Poisson random variables with independent
parameters λi, variables which are pairwise independent. In turn, the detection probabil-
ities pi are modeled as Beta-distributed independent random variables with parameters
αi and βi in each cell i. It is important to note here that pi is not simply the market share
of the MNO in cell i but the actual proportion of individuals detected by the network. As
an example, a call between a subscriber in a cell i and a non-subscriber in another cell j
of a given MNO is certainly detected by the network in both cells, thus potentially being
part of the aggregated data NMNO

i and NMNO
j (this will depend on preceding phases of

the process during the aggregation phase of microdata).

Now, the prior distribution of the hyperparameters αi and βi comes from the follow-
ing reasoning. We assume that αi

αi+βi
and αi+βi are independently distributed according

to ui ≡ αi
αi+βi

' fu(αi
αi+βi

;NReg, z) and vi ≡ αi + βi ' fv(αi + βi;N
Reg, z). Here fu and

fv are weakly informative prior distributions for u = α
α+β and v = α + β in each cell.

They make use of the information from the population register (NReg) and any other
potential auxiliary information z. The parameters vi = αi + βi can be understood as the
population size of each cell i (thus with support in (0,∞)) upon which the detection is
executed at that time instant and thus ui = αi/(αi + βi) can be understood as an a priori
proportion of individuals detected by the MNO in cell i.

With no prior information about the detection probability we may safely assume

22

4.3 Examples

fu = Unif[0, 1]. In turn, if we assume fv to be a gamma distribution with parameters

(NMNO
i + 1,

NMNO
i

N
Reg
i

) the most probable value for the sample size is NReg
i , which is consis-

tent with the preceding hypothesis for Ni.

The hyperparameters λi are modeled with another weakly information prior fλ
which may incorporate the information we have from the population register or similar
sources. In our R package, the unnormalised posterior density function of λ (equa-
tion (A.3)) is implemented in the function dlambda. As explained in WP5.3 (2018),
the accept-reject sampling method allows us to sample values from this unnormalized
distribution. This has been implemented in the function rlambda. A short summary of
the mathematical model used to compute estimates of the target population at initial
time instant is given in Appendix A .

To generate random values N according to P
(
N |NMNO;NReg) we generate values λ

and then the corresponding values N according to the Poisson distribution with param-
eter λ. This has been implemented in the function rN0.

Once posterior populations have been generated the user can choose the mean, the
median, the mode, or any other position indicator upon this distribution to provide a
point estimate for the population count of each cell. In the package the three first choices
(mean, median, mode) have been been implemented in the function postN0.

4.3. Examples

In the following sections we will show how to use the functions provided by the
package to compute population count estimates. In our examples we will use some
synthetic generated data but the same computations can be used with real data.

4.3.1. Prior distribution of the hyperparameters

Before illustrating the use of the package to estimate population counts, let us intro-
duce how to manage and specify prior distributions. The package pestim implements
functions for the following prior distributions:

uniform distribution;

triangular distribution;

gamma distribution;

The uniform distribution is well known and functions implementing the probability
density function, distribution function, quantile function, and random variable genera-

23

4 pestim - an R package to estimate population counts

tion are provided by the standard R distribution (dunif, punif, qunif, runif).

The triangular distribution can be used for modelling the a priori proportion of
detected individuals u, the a priori cell size v, and the parameter λ. The corresponding
functions for the density, distribution function, quantile function, and random variable
generation are ptriang, dtriang, qtriang and rtriang, respectively. Below is an
example of how to use the triangular distribution function (see figure 4.2).
Load the libraries
library(ggplot2)
library(pestim)

Generate values
x <- seq(0.10, 0.65, by = 0.01)
y <- dtriang(x, xMin = 0.10, xMax = 0.65, xMode = 0.32)
ggplot(data.frame(x = x, y= y), aes(x, y)) +

geom_line() +
scale_x_continuous(limits = c(0, 1)) +
xlab(’u’) + ylab(’Probability Density’) +
theme_bw()

Figure 4.2 The triangular distribution.

The gamma distribution is another choice for modelling both the cell size v and
the parameter λ. Functions for the probability density, the accumulative distribution,
the quantile, and the random generation of values are included in the standard R

24

4.3 Examples

distribution (dgamma, pgamma, qgamma, rgamma). We can assume a parametrisation
Gamma(α+ 1, ξ∗/α), where ξ∗ stands for the mode of the modeled variable (v or λ) and
α > 0 determines the degree of concentration around the mode ξ∗ (see figure 4.3). In the
following example we use 5 values for α (1, 5, 10, 100, and 1000). The following code
shows how to use this distribution.
alphas <- c(1, 5, 10, 100, 1000)
mode <- 35
df <- lapply(alphas, function(alpha){

x <- 0:100
y <- dgamma(x, shape = alpha + 1, scale = mode / alpha)
z <- as.character(alpha)
output <- data.frame(x = x, y = y, alpha = z)
return(output)

})

df <- Reduce(rbind, df)
ggplot(df, aes(x, y, col = alpha, group = alpha)) +

geom_line(aes(linetype = alpha), size = 1.1) +
scale_x_continuous(limits = c(0, 100)) + xlab(’’) + ylab(’’) +
theme_bw()

Figure 4.3 The gamma distribution with different degrees of concentration.

4.3.2. Estimation for a single cell

The process of estimating the population counts for a single cell can be summarized
as follows:

25

4 pestim - an R package to estimate population counts

1. set the values for NMNO and NReg;

2. generate values using the prior distributions for the hyperparameters;

3. estimate the populations counts;

4. compute some statistics (mean, median, mode) of the estimated population counts;

5. visualize the results.

For the initial time period t0 we shall assume (first working assumption) that there is
a high correlation between the actual size and official population data. This assumption
is supported by some preliminary studies with real mobile phone data (Meersman et al.,
2016; Doyle et al., 2014). In our examples, we will use a simulated data set such that

given the actual true value N0
i we will simulate a population register value NReg

i '
bN(µ = N0

i , σ = 0.1 ·N0
i)c;

for the corresponding number of individuals detected through the mobile network
we will assume a proportion of detected individuals randomly between 15% and
40% as realistic figures (see WP5.1 (2016) to compare with market shares as an
approximation to these figures).

Since the treatment of all cells is independent of each other, we will start by showing
the estimation process for a single cell. We investigate different combinations of priors
and numerical regimes for NMNO and NReg. In all cases we assume a priori fλ '
Gamma

(
α+ 1, N

Reg

α

)
for the parameter λ. Let us consider a true population size of

N (0) = 100 and an administrative population size given by NReg = 97 assuming an error
of 3%. Let us also consider the number of individuals detected by the mobile network
as NMNO = 19 assuming a proportion of detected individuals of around 20%.

In this first example, for the prior distribution of the proportion of detected individu-
als we will assume a weakly informative distribution fu = Unif(um, uM) with um = 0
and uM = 0.50. For the prior distribution of the cell size we will assume a triangular
distribution with parameters vm = 87, vM = 107, and v∗ = 97, assuming an (unknown)
error of 10% over the population register size.

A simple example with these parameters and α = 1 (extremely weakly prior for λ)
can be easily expressed in code:

Load the libraries
library(pestim)
library(data.table)
Set the input data
nReg <- 97

26

4.3 Examples

nMNO <- 19
Set the priors
fu <- list(’unif’, xMin = 0, xMax = 0.50)
fv <- list(’triang’, xMin = 87, xMax = 107, xMode = 97)
alpha <- 1
flambda <- list(’gamma’, shape = 1 + alpha, scale = nReg / alpha)
#Compute the estimates accepting default values for other parameters
postN0(nMNO, nReg, fu, fv, flambda)

The result is:

postMean postMedian postMode
110 109 128

The discrepancy between these estimates and the value NReg is explained right now
in the following example.

As a second illustrative example, let us compute the estimates for values of α =
1, 10, 100, 1000 and observe the effect of the amount of uncertainty in the prior for λ (see
figure 4.4). Each estimate is computed 100 times for each value of α:

Load the libraries
library(pestim)
library(data.table)
Set the input data
nReg <- 97
nMNO <- 19
Set the priors and compute the estimates for
each replication and each value of alpha
fu <- list(’unif’, xMin = 0, xMax = 0.50)
fv <- list(’triang’, xMin = 87, xMax = 107, xMode = 97)
alphaSeq <- c(1, 10, 100, 1000)
flambdaList <- list
for (alpha in alphaSeq){

flambdaList[[as.character(alpha)]] <-
list(’gamma’, shape = 1 + alpha, scale = nReg / alpha)

}
nSim <- 100
results <- lapply(alphaSeq, function(alpha){

flambda <- flambdaList[[as.character(alpha)]]
output <- replicate(nSim, postN0(nMNO, nReg, fu, fv, flambda))
output <- as.data.table(t(matrix(unlist(output), nrow = 3)))
setnames(output, c(’postMean’, ’postMedian’, ’postMode’))
output[, sim := 1:nSim]
output <- melt(output, id.vars = ’sim’)
output[, ’alpha’ := alpha]
return(output)

})
names(results) <- alphaSeq
results <- rbindlist(results)
ggplot(results, aes(x = variable, y = value)) +

geom_boxplot + facet_grid(. ˜ alpha) +
xlab(’’) + ylab(’’) + geom_hline(yintercept = nReg) +

27

4 pestim - an R package to estimate population counts

Figure 4.4 Distribution of estimated population counts for diverse degrees of prior uncertainty
in the value of λ.

theme(axis.title.x = element_text(hjust = 1, vjust = .5),
panel.background = element_blank(),
panel.grid.major = element_line(color = ’grey’, size = 0.2),
panel.grid.minor = element_line(color = ’grey’, size = 0.1))

The results appear in figure 4.4. We can observe how the more precise the prior value
of λ aroundNReg is, the more precise the final estimate around this same value will result.

This prior uncertainty can also be expressed in terms of the prior coefficient of
variation of λ. Since cv(λ) = 1√

1+α
, we have for α = (1, 10, 100, 1000) the coefficients

of variation given by 0.71, 0.30, 0.10, 0.03, respectively. Notice how the final estimates
inherit the original difference between N (0) and NReg, as expected.

Finally the posterior mode clearly appears as the worst estimator in comparison with
the posterior mean and the posterior median. This will be observed in other examples.

In the appendix A, the reader can consult these computations for a variety of choices
for the priors both in form and in parameters.

4.3.3. Estimation for several cells

Obtaining estimations for the target population for a grid of cells is similar to the pro-
cess for a single cell since the estimation in each cell is independent of each other. We can

28

4.3 Examples

consider the ratios NMNO
i

N
Reg
i

as an initial guess for the proportions of detected individuals

ui with a high probability whose uncertainty will depend both on the process to obtain
NMNO
i (preprocessing and aggregation stages of the mobile phone data) and on the

process to compile the population register figures NReg
i (measurement errors, processing

errors, coverage, etc.). Any of the three prior distributions (uniform, triangular, gamma)

can be used to express this uncertainty around NMNO
i

N
Reg
i

.

For the prior distribution for the local cell size vi we can make similar considerations
around the value NReg

i for each cell i focusing now on the process of construction of the
population register.

The prior distribution for the parameter λi is very important. If we choose αi � 1,
this means a high confidence on the population register as the true population. It is
advisable to be conservative and choose low values so that we do not artificially “force”
the final estimates to be close to NReg

i . In the choice of αi we can make use of the grid
construction and the distribution of NReg

i to propose some prior values.

The variance of a distribution Gamma(αi + 1,
N

Reg
i
αi

) is αi+1
α2
i
· NReg

i and under the

assumption of having a regular grid over the population, we can equate αi+1
α2
i
·NReg

i =

1
Ncells−1

∑Ncell
i=1

(
N

Reg
i − N̄Reg

)2
to obtain αi and then propose a value (upper bound) for

α as α ≤ mini αi.

The estimation processes for the prior hyperparameters are very important if we
want to obtain final estimates not based upon subjective beliefs. In the following we will
show an example how to estimate the population in Nc = 50 cells, and we will consider
a range of values for the hyperparameters to observe the effects on the final estimate.

For the intervals (um,i, uM,i) we will choose as centres of the intervals the natural
values NMNO

i /N
Reg
i and as radii, we will progressively shorten the intervals starting

from r1,i = min(NMNO
i /N

Reg
i , 1−NMNO

i /N
Reg
i) down to 0.005.

For the intervals (Nm,i, NM,i) we will choose as centres of the intervals the natu-
ral values NReg

i and as radii, we will progressively shorten the intervals starting from
R1,i = b0.25 ·NReg

i c down to 1. We will generate a number of nPar = 5 values for each
interval.

The piece of code below computes and displays the distribution of the relative bias

29

4 pestim - an R package to estimate population counts

with respect to the administrative population (in percentage) N̂i−N
Reg
i

N
Reg
i

· 100 for the pos-

terior mean, median and mode estimates, respectively, for all pairs of interval lengths
(uM,i − um,i, NM,i −Nm,i) and all cells.

In our example we will use synthetic data for the initial population. The popula-
tion given from the administrative register for each cell is generated using a Gaussian
distribution with mean 71 and standard deviation 3 while the population detected by
the MNO is again generated using a Gaussian distribution with mean 19 and standard
deviation 2. These values can be replaced with any real data.

The values for the posterior distribution of the population at the initial time instant
is again obtained by a call to the function postN0 for each set of parameters:
Load the libraries
library(pestim)
library(data.table)
library(ggplot2)

Set the number of cells and the input data
nCell <- 50
nReg <- round(rnorm(nCell, 71, 3))
nMNO <- round(rnorm(nCell, 19, 2))

Set the priors and compute the estimates and
relative bias for each set of parameters and each cell
nPar <- 5
radShares <- lapply(1:nCell, function(i){

seq(from = (nMNO / nReg)[i], to = 0.005, length.out = nPar)
})
radPopSizes <- lapply(1:nCell, function(i){

round(seq(from = 0.25 * nReg[i], to = 1, length.out = nPar))
})
varnReg <- var(nReg)
alphaBound <- sapply(1:nCell, function(i){

0.5 * (nReg[i] / varnReg + sqrt((nReg[i] / varnReg)ˆ2 + 4 * nReg[i] / varnReg))
})
alpha <- min(alphaBound)
results.Mean <- lapply(1:nCell, function(i){matrix(NA, ncol = nPar, nrow = nPar)})
results.Median <- lapply(1:nCell, function(i){matrix(NA, ncol = nPar, nrow = nPar)})
results.Mode <- lapply(1:nCell, function(i){matrix(NA, ncol = nPar, nrow = nPar)})
relBias.Mean <- list()
relBias.Median <- list()
relBias.Mode <- list()
for (i in 1:nCell){

print(paste0(’i=’, i))
for (radShare.index in seq(along = radShares[[i]])) {

print(paste0(’radShare.index=’, radShare.index))
for (radPopSize.index in seq(along = radPopSizes[[i]])) {

print(paste0(’radPopSize.index=’, radPopSize.index))
um <- nMNO[[i]] / nReg[[i]] - radShares[[i]][radShare.index]
uM <- nMNO[[i]] / nReg[[i]] + radShares[[i]][radShare.index]
fu <- list(’unif’, xMin = um, xMax = uM)

30

4.3 Examples

Nm <- nReg[[i]] - radPopSizes[[i]][radPopSize.index]
NM <- nReg[[i]] + radPopSizes[[i]][radPopSize.index]
fv <- list(’unif’, xMin = Nm, xMax = NM)
flambda <- list(’gamma’, shape = alpha + 1, scale = nReg[[i]] / alpha)

auxResults <- postN0(nMNO[[i]], nReg[[i]], fu, fv, flambda)
results.Mean[[i]][radShare.index, radPopSize.index] <- auxResults[[’postMean’]]
results.Median[[i]][radShare.index, radPopSize.index] <- auxResults[[’postMedian’]]
results.Mode[[i]][radShare.index, radPopSize.index] <- auxResults[[’postMode’]]

}
}

rownames(results.Mean[[i]]) <- round(2 * radShares[[i]], 2)
rownames(results.Median[[i]]) <- round(2 * radShares[[i]], 2)
rownames(results.Mode[[i]]) <- round(2 * radShares[[i]], 2)
colnames(results.Mean[[i]]) <- 2 * radPopSizes[[i]]
colnames(results.Median[[i]]) <- 2 * radPopSizes[[i]]
colnames(results.Mode[[i]]) <- 2 * radPopSizes[[i]]
relBias.Mean[[i]] <- round((results.Mean[[i]] - nReg[[i]]) / nReg[[i]] * 100, 1)
relBias.Median[[i]] <- round((results.Median[[i]] - nReg[[i]]) / nReg[[i]] * 100, 1)
relBias.Mode[[i]] <- round((results.Mode[[i]] - nReg[[i]]) / nReg[[i]] * 100, 1)

}

parNames <- expand.grid(paste0(’u’, 1:5), paste0(’v’, 1:5))
colnames(parNames) <- c(’u’, ’v’)

relBias.Mean.df <- data.frame(u = character(0),
v = character(0),
cell = character(0),
N = numeric(0))

relBias.Median.df <- data.frame(u = character(0),
v = character(0),
cell = character(0),
N = numeric(0))

relBias.Mode.df <- data.frame(u = character(0),
v = character(0),
cell = character(0),
N = numeric(0))

for (i in 1:nCell){

aux <- cbind(parNames, cell = as.character(i), N = as.vector(relBias.Mean[[i]]))
relBias.Mean.df <- rbind(relBias.Mean.df, aux)

aux <- cbind(parNames, cell = as.character(i), N = as.vector(relBias.Median[[i]]))
relBias.Median.df <- rbind(relBias.Median.df, aux)

aux <- cbind(parNames, cell = as.character(i), N = as.vector(relBias.Mode[[i]]))
relBias.Mode.df <- rbind(relBias.Mode.df, aux)

}

Draw the results
ggplot(relBias.Mean.df, aes(x = ’ ’, y = N)) +

geom_boxplot() +
facet_grid(factor(u) ˜ factor(v)) +
xlab(’Prior parameters (u, v)’) + ylab(’Posterior Mean Estimate Relative Bias (%)\n’) +
#ggtitle(paste0(’Relative bias (%) distributions of the ’, nCell, ’ cells\n’)) +
theme(axis.title.x = element_text(hjust = 0.5, vjust = .5),

panel.background = element_blank(),

31

4 pestim - an R package to estimate population counts

panel.grid.major = element_line(color = ’grey’, size = 0.2),
panel.grid.minor = element_line(color = ’grey’, size = 0.05))

ggplot(relBias.Median.df, aes(x = ’ ’, y = N)) +
geom_boxplot() +
facet_grid(factor(u) ˜ factor(v)) +
xlab(’Prior parameters (u, v)’) + ylab(’Posterior Median Estimate Relative Bias (%)\n’) +
#ggtitle(paste0(’Relative bias (%) distributions of the ’, nCell, ’ cells\n’)) +
theme(axis.title.x = element_text(hjust = 0.5, vjust = .5),

panel.background = element_blank(),
panel.grid.major = element_line(color = ’grey’, size = 0.2),
panel.grid.minor = element_line(color = ’grey’, size = 0.05))

ggplot(relBias.Mode.df, aes(x = ’ ’, y = N)) +
geom_boxplot() +
facet_grid(factor(u) ˜ factor(v)) +
xlab(’Prior parameters (u, v)’) + ylab(’Posterior Mode Estimate Relative Bias (%)\n’) +
#ggtitle(paste0(’Relative bias (%) distributions of the ’, nCell, ’ cells\n’)) +
theme(axis.title.x = element_text(hjust = 0.5, vjust = .5),

panel.background = element_blank(),
panel.grid.major = element_line(color = ’grey’, size = 0.2),
panel.grid.minor = element_line(color = ’grey’, size = 0.05))

Graphically, the results are represented in figures 4.5, 4.6, and 4.7. We observe how
the overall precision (for the whole set of 50 cells) gets better as the intervals get shorter
(within the precision limits achieved with the prior for λ).

Figure 4.5 The distribution of the relative bias for the posterior mean for 50 cells.

32

4.4 Estimates along a sequence of time periods

Figure 4.6 The distribution of the relative bias for the posterior median for 50 cells.

The same combinations for distributions used for fu and fv can be used in the case
of several cells as in the case of a single cell. Since this process is straightforward we will
not show here each combination. Users can make choices of their own.

4.4. Estimates along a sequence of time periods

In this section we show how to extend the previous estimation process along a
sequence of time instants. Figure 4.8 presents schematically this process.

As input data for the final inference stage we used the number of individuals
NMNO
ij (t0, tn) moving from territorial cell i to cell j in the time interval (t0, tn) according

to the network. These data will be combined with official data and at the end we will
provide the following outputs:

the probability distribution of actual individuals in each territorial cell i at the
initial time t0;

the probability distribution of actual individuals at the time instants tn for n =
1, 2, . . .

We make two prior assumptions:

33

4 pestim - an R package to estimate population counts

Figure 4.7 The distribution of the relative bias for the posterior mode for 50 cells.

Figure 4.8 A diagram of the estimation process for the target population using mobile phone
and official population data for a sequence of time instants.

1. As in preceding sections, to combine both aggregated mobile phone and official
data we assume that at a given time instant t0 both population figures in each
territorial cell can be assimilated to some extent. Again, in the model we are taking
N

Reg
i (t0) as fixed quantities without prior distributions (representing uncertainty in

its knowledge).Therefore NReg
i (t0) will be fixed external parameters in the model.

2. The movements of individuals from one cell to another cell are assumed to be
independent of being subscribers of a given MNO or another.

Notice that the first hypothesis allows us to infer the actual population from the data
at the initial time instant whereas the second hypothesis will now be used to reconstruct

34

4.5 Examples

the time evolution of the actual population using only the mobile phone data. The hier-
archical model used to estimate the target population in this case is shortly presented in
A and a detailed presentation can be found in WP5.3 (2018).

The computation of the probability functions P
(
Ni(tn)

∣∣NMNO(t0, t1)
)

for each cell i
will allow us to choose as point estimator the posterior mean, posterior median, posterior
mode or any similar posterior indicator. The computation is conducted empirically in
three steps:

1. The initial population value Ni(t0) is generated for all cells i = 1, . . . , I according
to the model using NMNO

i· (t0) as input data and choosing weakly informative
priors fui, fvi and fλi.

2. A transition probability matrix [pij(t0, tn)] is generated according to the model
using NMNO(t0, tn) as input data and choosing weakly informative priors fαij .

3. These generated quantities are used in formula (A.6a) to generate Ni(t1) for all
cells i = 1, . . . , I .

Following these steps we can generate an empirical posterior distribution of values
Ni(tn) for each cell i. Then we can use these distributions to provide a point estimate
according to its mean, median, mode, or any other distribution position statistics.

4.5. Examples

Let us consider an extremely simple example of time evolution between an initial
time period t0 and a final time period t1. We will consider 12 cells. The input data
thus comprise the transition matrix of individuals from cell to cell in the time interval
(t0, t1) according to the network together with the number of individuals according to
the population register NReg

i (t0) at each cell i at the initial time period t0. In this sense,
the package pestim contains a dataset called MobPop which provides population
counts moving from each pair of cells at each time interval (t0, tn) for a simulated
true population, a corresponding official population in a register and a population
detected with a mobile telecommunication network. The data are actually stored in a
data.table with the following columns:

ID CELL INI - identification code for each initial cell in the displacements;

ID CELL END - identification code for each final cell in the displacements;

ID T - identification code of each time moment. It is very important to underline
that the table collects always displacements between the initial time instant and
the corresponding time instant specified by ID T;

35

4 pestim - an R package to estimate population counts

N REG - counts according to the population register. Note that these counts do
not evolve in time;

N 0 - counts of the simulated true population;

N MNO 1 - counts of individuals detected by the Mobile Network Operator.

We will use these data in our examples.

Additionally, we need to choose priors for ui, vi, λi, and αij , according to the hierar-
chical model:

For ui we will choose uniform distributions with interval ranges centered at
NMNO
i· /N

Reg
i (t0) and moderately large radii (up to 10% of the centre values).

For vi we will also choose uniform distributions with interval ranges centered at
N

Reg
i (t0) and moderately large radii (up to 10% of the centre values).

For λi we will choose gamma distributions with shape parameters αi + 1 and scale
parameters NReg

i /αi, with αi = 1
0.12
− 1 corresponding to coefficients of variations

of 10%, too.

For αij we will choose uniform distributions with interval ranges centered at
NMNO

ij (t0,t1)

NMNO
i· (t0,t1)

and coefficients of variation of 10% for all parameters.

The computation of the evolved population in the initial time interval (t0, t1) can
thus be implemented with the following code:
Load the libraries
library(pestim)
library(data.table)

Set input data
data(MobPop)
Data <- MobPop[ID_T == 0]
Scale <- 1e3
NMNOmat <- dcast(Data, ID_CELL_INI ˜ ID_CELL_END, value.var = ’N_MNO_1’)
NMNOmat <- as.matrix(NMNOmat[, as.character(1:12), with = FALSE]) / Scale
InitialPop <- Data[ID_CELL_END == ID_CELL_INI]
nMNO_ini <- InitialPop[[’N_MNO_1’]] / Scale
nReg <- InitialPop[[’N_REG’]] / Scale
Set priors
u0 <- nMNO_ini / nReg
fu <- lapply(u0, function(u){

umin <- max(0, u - 0.10 * u)
umax <- min(1, u + 0.10 * u)
output <- list(’unif’, xMin = umin, xMax = umax)
return(output)

})

36

4.6 Further developments

v0 <- nReg
fv <- lapply(v0, function(u){

umin <- max(0, u - 0.10 * u)
umax <- u + 0.10 * u
output <- list(’unif’, xMin = umin, xMax = umax)
return(output)

})
alpha <- 1 / 0.1**2 - 1 # cv(lambda) = 0.1
flambda <- lapply(v0, function(v){list(’gamma’, shape = 1 + alpha,

scale = v / alpha)})

DistributNames <- rep(’unif’, 12)
Variation <- rep(list(list(cv = 0.10)), 12)
Compute estimates and relative biases with respect to true population
Nt.mat <- postNt(NMNOmat, nReg, fu, fv, flambda, DistributNames, Variation, Scale)
N0_t1 <- Data[, sum(N_0), by = ’ID_CELL_END’]$V1
relBias <- round((Nt.mat - N0_t1) / N0_t1 * 100, 2)

The resulting relative bias relBias for each cell i = 1, . . . , 12 (in percentage) is
given by:

postMean postMedian postMode
15.2 -6.4 7.8
10.4 -2.7 -43.9
5.4 4.8 22.6
2.3 1.2 -24.4
8.4 -4.8 230.9
-1.7 -1.8 1.3
1.7 1.4 20.6
7.9 2.5 22.5
9.6 -12.5 -43.8
12.9 7.6 29.8
9.2 -3.0 -10.3
5.7 -13.2 -20.9

Notice again how the posterior mean and median outperforms the posterior mode.
For more time periods we can trivially repeat the same procedure as above. It is only a
matter of computation time. In figure 4.9 we can find the same computation as above
extended to the whole time span for the data set MobPop.

4.6. Further developments

The pestim package contains computationally intensive functions that needs to be
optimized in the next versions to keep the running time in acceptable limits even for
complex data. The optimizations will be done at different levels:

each function will be profiled and then improved from the point of view of running
time and memory requirements. Nevertheless, a balance will be kept between the
readability of the code and its performance;

37

4 pestim - an R package to estimate population counts

Figure 4.9 Time evolution of the population count estimates for 672 consecutive time periods.

we will further extend the parallelization of the code (parallel computations are
already used for the kummer function and rN0). We will also show how par-
allelization can be introduced at the level of the user code (like the examples
presented in this document);

38

4.6 Further developments

mathematical elements as the optimization algorithm to compute the mode of
the posterior distribution of the parameter λ, the candidate distribution for the
accept-reject method, . . . can be further improved to gain performance;

unit tests will be added in order to maintain the quality of the software throughout
its life time;

The package will also be enhanced in the future with some visualisations capabilities
such as maps, grids, etc. Other future improvements will consider the underlaying
theoretical model: modelling the uncertainty in population register, introducing some
spatial correlation between cells and time correlation between successive periods.

39

Appendix A

Implementation details and examples of
combinations of priors for pestim

A.1. The mathematical model used to estimate the target population at ini-
tial time

The model to estimate population counts at the initial time instant can be summarized
as follows:

NMNO
i ' Bin (Ni, pi) , NMNO

i ⊥ NMNO
j , i 6= j = 1, . . . , I (A.1)

Ni ' Po (λi) , Ni ⊥ Nj , i 6= j = 1, . . . , I

pi ' Beta (αi, βi) , pi ⊥ pj i 6= j = 1, . . . , I

(αi, βi) '
fu(αi

αi+βi
;NReg, z) · fv(αi + βi;N

Reg, z)

αi + βi
(αi, βi) ⊥ (αj , βj), i 6= j = 1, . . . , I

λi ' fλ(λi;N
Reg
i , z) (λi > 0, λi ⊥ λj), i = 1, . . . , I.

The quantity of interest here is the target population counts N = (N1, . . . , NI)
T in

each cell i. We followed a Bayesian approach to compute the posterior distribution of
the target population. This approach allowed us to account for the inference and the
assessment of the uncertainty, hence of the quality of estimations (to be dealt with in de-
liverable 5.5). We can leverage the prior information we have at our disposal by choosing
the probability distribution fu, fv and fλ. The posterior distribution P

(
N
∣∣NMNO;NReg

)

is given by (we dropped the subscripts since each cell is treated independently of each
other – see WP5.3 (2018) for details):

P
(
N
∣∣NMNO;NReg

)
∝
∫ ∞

0
dλ P

(
λ
∣∣NMNO;NReg

)
· Po(N ;λ), (A.2)

41

Appendix A Implementation details and examples of combinations of priors for pestim

Since N is a Poisson random variable, the most probable value for N is given by bλc
and the posterior distribution for the hyperparameter λ will allow us to provide a point
estimator for N (mode, mean, median, . . .).

The posterior P
(
λ
∣∣NMNO;NReg) is given by WP5.3 (2018):

P
(
λ
∣∣NMNO;NReg) ∝ P (λ) · Po(NMNO;λ) · S

(
λ,NMNO, NReg

)
, (A.3)

where we have defined

S(λ,NMNO, NReg) =

∞∑

n=0

λn

n!
INMNO,n(NReg), (A.4)

INMNO,n(NReg) =

∫ ∞

0

∫ ∞

0

dαdβ
fu(α

α+β ;NReg) · fv(α+ β;NReg

α+ β

B
(
α+NMNO, β + n−NMNO

)

B (α, β)
.

(A.5)

The mathematical details of the computation of these quantities can be consulted in
the appendix of WP5.3 (2018).

A.2. The mathematical model used to estimate the target population for a
sequence of time instants

The following hierarchical model was used to estimate the target population at
successive time periods. Let pij(t0, tn) denote the probability for an individual to move
from cell i to cell j in the time interval (t0, tn). Let NMNO

ij (t0, tn) be the number of
individuals moving from cell i to cell j according to the network. We denoteNMNO

i· (t0) =∑I
j=1N

MNO
ij (t0, tn).

Ni(tn) =

Ni(t0) +

I∑

j=1
j 6=i

pji(t0, tn)Nj(t0)−
I∑

j=1
j 6=i

pij(t0, tn)Ni(t0)

 , i = 1, . . . , I

(A.6a)

pi·(t0, tn) ' Dir (αi1(t0, tn), . . . , αiI(t0, tn)) , pi·(t0, tn) ⊥ pj·(t0, tn), i 6= j = 1, . . . , I
(A.6b)

αij(t0, tn) ' fαij
(
αij ;

NMNO
ij (t0, tn)

NMNO
i· (t0)

)
, i = 1, . . . , I (A.6c)

NMNO
i (t0) ' Bin (Ni(t0), pi(t0)) , NMNO

i (t0) ⊥ NMNO
j (t0), i 6= j = 1, . . . , I

(A.6d)

42

A.2 The mathematical model used to estimate the target population for a sequence of time
instants

Ni(t0) ' Po (λi(t0)) , Ni(t0) ⊥ Nj(t0), i 6= j = 1, . . . , I (A.6e)
pi(t0) ' Beta (αi(t0), βi(t0)) , pi(t0) ⊥ pj(t0) i 6= j = 1, . . . , I (A.6f)

(αi(t0), βi(t0)) '
fui

(
αi

αi+βi
;
NMNO

i (t0)

N
Reg
i (t0)

)
· fvi

(
αi + βi;N

Reg
i (t0)

)

αi + βi
,

(αi(t0), βi(t0)) ⊥ (αj(t0), βj(t0)), i 6= j = 1, . . . , I (A.6g)

λi(t0) ' fλi(λi;NReg
i (t0)) (λi(t0) > 0, λi(t0) ⊥ λj(t0)), i = 1, . . . , I,

(A.6h)

where

[·] denotes the nearest integer function;

fαij is the probability density function of the parameters αij . The notation

fαij

(
αij ;

NMNO
ij (t0, tn)

NMNO
i· (t0)

)

is meant to indicate that
NMNO

ij (t0,tn)

NMNO
i· (t0)

should be taken as the mode of the density
function;

fui is the probability density function of the parameter u in cell i with mode
NMNO

i (t0)

N
Reg
i (t0)

;

fvi is the probability density function of the parameter v in cell i with mode
N

Reg
i (t0);

fλi is the probability density function of the parameter λ in cell i with mode
N

Reg
i (t0).

Equations (A.6d) to (A.6h) are indeed the same model described in section 4.2. We
have explicitly added the time dependence. Equations (A.6a), (A.6b), and (A.6c) take
care of the time evolution of the estimates.

Their meaning is straightforward. Equation (A.6a) states that the number of indi-
viduals in a cell i at time tn equals the initial number of individuals plus those arriving
from other cells in the given time interval minus those leaving for other cells in the same
time interval. The number of individuals arriving and leaving are estimated using the
transition probability among cells.

43

Appendix A Implementation details and examples of combinations of priors for pestim

We modelled these transition probabilities for a given cell i as a multivariate random
variable with a Dirichlet distribution (see equation (A.6b)) with parameters αi1, . . . , αiI
(in fact, Dirichlet distributions are commonly used as prior distributions in Bayesian
statistics). These parameters are given unimodal prior distributions fαij with mode in
NMNO

ij

NMNO
i·

(see equation (A.6c)) according to our second working assumption.

A.3. Technical comments on the functions

The actual computation of the population count estimates at the initial time instant
is done by the function postN0, which takes the following input parameters:

nMNO - the number of the individuals detected in the actual cell according to the
mobile network operator;

nReg - the number of individuals from the population register;

fu and fv - named lists with the prior marginal distributions of the two-dimensional
points for the Monte Carlo integration;

flambda - named list with the prior distribution of the lambda parameter;

n - the number of points to generate in the posterior distribution for the computa-
tion. Default value is 1e3;

scale - a numeric vector with the scale to count the number of individuals.
Default value is 1;

relTol - relative tolerance in the computation of the confluent hypergeometric
(Kummer) function. Default value is 1e-6;

nSim - number of two-dimensional points to generate to compute the integral
with Monte Carlo simulations. Default value is 1e4;

nStrata - integer vector of length 2 with the number of strata in each dimension.
Default values are 1 and 1e2, respectively;

nThreads - the number of threads to be used for computing the value of the
confluent hypergeometric function.

In the examples above we used the default values for the parameters n, scale,
relTol, nSim, nStrata, nThreads.

44

A.3 Technical comments on the functions

The posterior distribution used to generate random numbers for the actual popu-
lation counts Ni(t0) is a Poisson distribution (see the second row from model (A.1)).
Thus, for the initial time instant t0, the function postN0 generates n random values of
the posterior distribution of Ni(t0) by internally calling the function rN0. In turn, rN0
executes internally rlambda to generate the corresponding values for λi.

rlambda generates the points according to the accept-reject method using as can-
didate distribution a Cauchy distribution whose parameters are taken from the prior
distributions. The function first computes the mode for the posterior distribution of λ
using the function modeLambda and then applies the accept-rejection method.

The function modeLambda computes the mode of the posterior density function of
the parameter λ in the hierarchical model. This unnormalized posterior density function
is implemented in our package by the function dlambda, computed according to

f(λ
∣∣NMNO;NNreg) ∝ f(λ) · dpois(NMNO;λ) · S(λ;NMNO, NNreg),

where dpois is the probability density function of a Poisson distribution (implemented
in the standard R distribution) and S is defined in equations (A.3) and (A.4).

S(·; ·; ·) is computed using the Monte Carlo method described in the appendix of
the deliverable WP5.3 (2018). The points needed by this method are generated using
the functions genUV, which makes use of the stratified importance sampling technique.
These points are then used as inputs for the function Phi.

The function Phi multiplies a ratio of two Beta functions computed by ratioBeta
function and the confluent hypergeometric function 1F1, which is given by a call to the
function kummer.

The function ratioBeta computes the ratio of two Beta functions using the differ-
ence between their logarithms and then exponentiating the result to avoid numerical
overflow. The logarithms of the Beta functions are computed using the lbeta from the
base R library.

The function kummer was implemented in C++ and called using the Rcpp package
because it is numerically intensive and the performance of a pure R implementation is far
from the C++ implementation in terms of computing time. It is a partial implementation
of the confluent hypergeometric function 1F1(z; a; b). Since is one of the most time
consuming function from the pestim package, we provide here few details about the
implementation that we used in the current version of the package. The confluent
hypergeometric function is defined as:

45

Appendix A Implementation details and examples of combinations of priors for pestim

M(z; a; b) =
∞∑

j=0

(a)j
Γ(b+ j)

× zj

j!
(A.7)

where (a)j is the Pochhammer symbol defined by:

a0 = 1, (a)j = a× (a+ 1)× · · · (a+ j − 1), j = 1, 2, · · · (A.8)

The sum in equation A.7 always converge, function M being analytic throughout
the complex plane C. Next, we define:

1F1(z; a; b) = Γ(b)M(z; a; b) =
∞∑

j−0

(a)j
(b)j
× zj

j!
(A.9)

which is also denoted by M(a;b;z) and is referred to as the confluent hypergeometric
function.

Although the work by PeaOlvPor (2017) recommend to divide the computation of
1F1(z; a; b) according to the value of z using two different approaches, one for z < 80
where the best method recommended is a Taylor series expansion, and another one for
z ≥ 80 where a computation procedure based on Watson’s lemma (Watson, 1918) is
recommended, our numerical experiments showed that the Taylor series approach is
the method with the best results in terms of reliability for the numerical regime of the
inputs in our case. Thus, we computed the confluent hypergeometric function as:

1F1(z; a; b) ≈ SN =

N∑

j=0

(a)j
(b)j

zj

j!
=

N∑

j=0

Aj (A.10)

The actual C++ implementation is based on the following equations:

A0 = 1 (A.11)
S0 = A0 (A.12)

Aj+1 = Aj
a+ j

b+ j

z

j + 1
(A.13)

Sj+1 = Sj +Aj+1 j = 0, 1, 2, · · · (A.14)

The stopping criterion for the iterative procedure was set as Aj+1

Sj
< tol, where Aj

and Sj were previously defined.

An interested reader could consult the C++ implementation of the above formulas in
Kummer.cpp file from the src directory of pestim source package. For efficiency rea-
sons, considering that calling a C++ function from the R environment has an important

46

A.4 fu ' Unif(um, uM), fv ' Unif(Nm, NM)

overhead, to minimize the number of functions calls we pass three vectors z, a, and b
to Kummer function and, in turn, it returns the value of the confluent hypergeometric
function for all the elements in the input parameters. More, since the computation of the
confluent hypergeometric function for (zi, ai, bi) is independent form the computation
for zj , aj , bj we parallelized the computations as follows:
divide vectors z, a, b in equal chunks
for (each chunk (z_c, a_c, b_c)) do in parallel
kummer(z_c, a_c, b_c)

The parallelization of the computation for confluent hypergeometric function was
implemented using RcppParallel package.

A.4. fu ' Unif(um, uM), fv ' Unif(Nm, NM)

Let us now illustrate the computation of estimates choosing uniform priors for u and
v and investigating the effect of their interval amplitudes. For the intervals (um, uM) we
will choose as centres of the intervals the value NMNO/NReg and as radii, we will pro-
gressively shorten the intervals starting from r1 = min(NMNO/NReg, 1−NMNO/NReg)
down to 0.005. We will use a number of nPar = 10 points for u.

For the intervals (Nm, NM) we will choose as centres of the intervals the natu-
ral value NReg and as radii, we will progressively shorten the intervals starting from
R1 = b0.25 ·NRegc down to 1 and we will also use the same number nPar = 10 of points.

In all cases we will use α = 1 (coefficient of variation of 71%) as a weakly informative
choice. For each pair of interval lengths (uM − um, NM − Nm) we will estimate the
population and compute the relative bias with respect to the administrative popula-
tion (in percentage) N̂−NReg

NReg · 100 for the posterior mean, median and mode estimates.
The following piece of code does this estimation (to keep the length of this document
reasonable we do not reproduce here the actual numerical results, only a graphical
representation in figure [FIG]). One can note that this code is similar to the previous
simple illustrative example, the estimation being computed with a call to the function
postN0, and only the prior distributions being different in each call.

The code is:
Load the libraries
library(pestim)
library(data.table)

Set the input data
nReg <- 97
nMNO <- 19

Set the priors and compute the estimates for each set of parameters

47

Appendix A Implementation details and examples of combinations of priors for pestim

nPar <- 10
radShares <- seq(from = nMNO / nReg, to = 0.005, length.out = nPar)
radPopSizes <- round(seq(from = 0.25 * nReg, to = 1, length.out = nPar))
alpha <- 1
flambda <- list(’gamma’, shape = alpha + 1, scale = nReg / alpha)
results.Mean <- matrix(NA, ncol = nPar, nrow = nPar)
results.Median <- matrix(NA, ncol = nPar, nrow = nPar)
results.Mode <- matrix(NA, ncol = nPar, nrow = nPar)
for (radShare.index in seq(along = radShares)) {

for (radPopSize.index in seq(along = radPopSizes)) {
um <- nMNO / nReg - radShares[radShare.index]
uM <- nMNO / nReg + radShares[radShare.index]
fu <- list(’unif’, xMin = um, xMax = uM)
Nm <- nReg - radPopSizes[radPopSize.index]
NM <- nReg + radPopSizes[radPopSize.index]
fv <- list(’unif’, xMin = Nm, xMax = NM)
auxResults <- postN0(nMNO, nReg, fu, fv, flambda)
results.Mean[radShare.index, radPopSize.index] <- auxResults[[’postMean’]]
results.Median[radShare.index, radPopSize.index] <- auxResults[[’postMedian’]]
results.Mode[radShare.index, radPopSize.index] <- auxResults[[’postMode’]]

}
}
rownames(results.Mean) <- round(2 * radShares, 2)
rownames(results.Median) <- round(2 * radShares, 2)
rownames(results.Mode) <- round(2 * radShares, 2)
colnames(results.Mean) <- 2 * radPopSizes
colnames(results.Median) <- 2 * radPopSizes
colnames(results.Mode) <- 2 * radPopSizes
relBias.Mean <- round((results.Mean - nReg) / nReg * 100, 1)
relBias.Median <- round((results.Median - nReg) / nReg * 100, 1)
relBias.Mode <- round((results.Mode - nReg) / nReg * 100, 1)

The results are displayed in tables A.1. We do not see a strong effect of the reduction
of the intervals (um, uM) and (vm, vM) on the final estimates. The main reason is because
these intervals are symmetric with respect to the prior modes and the point estimates
are central position measures of the posterior distributions.

48

A.4 fu ' Unif(um, uM), fv ' Unif(Nm, NM)

Mean Length v

Length u 48 44 38 32 28 22 18 12 8 2
0.39 -9.3 47.4 -7.2 40.2 13.4 5.2 39.2 0.0 -13.4 56.7
0.35 9.3 -9.3 11.3 21.6 15.5 17.5 -13.4 -13.4 -10.3 -11.3
0.31 -5.2 59.8 -8.2 0.0 4.1 5.2 8.2 38.1 -14.4 -6.2
0.26 1.0 -2.1 23.7 4.1 13.4 -6.2 5.2 -9.3 61.9 -3.1
0.22 18.6 26.8 13.4 14.4 -7.2 16.5 -13.4 -10.3 6.2 -5.2
0.18 -8.2 12.4 -5.2 6.2 16.5 -11.3 -1.0 -5.2 56.7 -2.1
0.14 -12.4 -5.2 14.4 -9.3 17.5 4.1 -11.3 -1.0 11.3 -5.2
0.09 24.7 22.7 20.6 15.5 0.0 18.6 12.4 11.3 9.3 -6.2
0.05 -6.2 27.8 -2.1 16.5 0.0 8.2 -4.1 -11.3 21.6 -15.5
0.01 13.4 5.2 2.1 17.5 29.9 13.4 -5.2 2.1 7.2 -10.3

Median Length v

Length u 48 44 38 32 28 22 18 12 8 2
0.39 -9.3 26.8 -7.2 22.7 11.3 4.1 19.6 0.0 -13.4 23.7
0.35 8.2 -10.3 10.3 20.6 13.4 16.5 -14.4 -13.4 -10.3 -11.3
0.31 -6.2 44.3 -8.2 0.0 3.1 4.1 8.2 16.5 -14.4 -6.2
0.26 1.0 -2.1 18.6 4.1 12.4 -7.2 4.1 -9.3 53.6 -3.1
0.22 17.5 24.7 11.3 13.4 -7.2 15.5 -13.4 -10.3 6.2 -5.2
0.18 -8.2 10.3 -5.2 5.2 15.5 -11.3 -1.0 -5.2 54.6 -3.1
0.14 -11.3 -5.2 12.4 -9.3 15.5 3.1 -11.3 -1.0 10.3 -5.2
0.09 22.7 20.6 19.6 13.4 -1.0 11.3 11.3 10.3 7.2 -5.2
0.05 -6.2 25.8 -2.1 16.5 0.0 8.2 -4.1 -11.3 19.6 -16.5
0.01 12.4 5.2 2.1 15.5 26.8 11.3 -5.2 1.0 7.2 -9.3

Mode Length v

Length u 48 44 38 32 28 22 18 12 8 2
0.39 -16.5 24.7 -7.2 6.2 62.9 29.9 -14.4 10.3 -37.1 72.2
0.35 9.3 -3.1 42.3 -18.6 49.5 66.0 -19.6 -29.9 -25.8 -9.3
0.31 3.1 221.6 -23.7 -8.2 -2.1 8.2 -5.2 -26.8 -41.2 1.0
0.26 -7.2 -10.3 29.9 20.6 6.2 -2.1 12.4 -7.2 -33.0 9.3
0.22 43.3 17.5 -4.1 -6.2 -7.2 -30.9 -26.8 2.1 34.0 15.5
0.18 -7.2 -14.4 -33.0 42.3 -16.5 -2.1 -5.2 4.1 -30.9 14.4
0.14 -22.7 -11.3 62.9 3.1 -1.0 -2.1 -12.4 3.1 10.3 8.2
0.09 3.1 61.9 22.7 -7.2 3.1 60.8 48.5 -2.1 7.2 -14.4
0.05 -11.3 -1.0 -2.1 -2.1 13.4 -29.9 9.3 -19.6 13.4 -16.5
0.01 44.3 -5.2 2.1 -28.9 114.4 -16.5 -13.4 -15.5 -12.4 -5.2

Table A.1 Relative bias (in percentage) for the posterior mean, median, and mode estimates for
priors fu ' fv ' Unif and fλ ' Gamma(α+ 1, N

Reg

α) with α = 1 (cv(λ) = 0.71) .

49

Appendix A Implementation details and examples of combinations of priors for pestim

A.5. fu ' Unif(um, uM), fv ' triang(Nm, NM , N
Reg)

The same computations as in the preceding section can be carried out using a
triangular prior distribution fv for the a priori population size. The limits Nm and NM

are chosen as in the preceding section and the mode as N∗ = NReg.
Load the libraries
library(pestim)
library(data.table)

Set the input data
nReg <- 97
nMNO <- 19

Set the priors and compute the estimates for each set of parameters
nPar <- 10
radShares <- seq(from = nMNO / nReg, to = 0.005, length.out = nPar)
radPopSizes <- round(seq(from = 0.25 * nReg, to = 1, length.out = nPar))
alpha <- 1
flambda <- list(’gamma’, shape = alpha + 1, scale = nReg / alpha)
results.Mean <- matrix(NA, ncol = nPar, nrow = nPar)
results.Median <- matrix(NA, ncol = nPar, nrow = nPar)
results.Mode <- matrix(NA, ncol = nPar, nrow = nPar)
for (radShare.index in seq(along = radShares)) {

for (radPopSize.index in seq(along = radPopSizes)) {
um <- nMNO / nReg - radShares[radShare.index]
uM <- nMNO / nReg + radShares[radShare.index]
fu <- list(’unif’, xMin = um, xMax = uM)
Nm <- nReg - radPopSizes[radPopSize.index]
NM <- nReg + radPopSizes[radPopSize.index]
fv <- list(’triang’, xMin = Nm, xMax = NM, xMode = nReg)
auxResults <- postN0(nMNO, nReg, fu, fv, flambda)
results.Mean[radShare.index, radPopSize.index] <- auxResults[[’postMean’]]
results.Median[radShare.index, radPopSize.index] <- auxResults[[’postMedian’]]
results.Mode[radShare.index, radPopSize.index] <- auxResults[[’postMode’]]

}
}
rownames(results.Mean) <- round(2 * radShares, 2)
rownames(results.Median) <- round(2 * radShares, 2)
rownames(results.Mode) <- round(2 * radShares, 2)
colnames(results.Mean) <- 2 * radPopSizes
colnames(results.Median) <- 2 * radPopSizes
colnames(results.Mode) <- 2 * radPopSizes
relBias.Mean <- round((results.Mean - nReg) / nReg * 100, 1)
relBias.Median <- round((results.Median - nReg) / nReg * 100, 1)
relBias.Mode <- round((results.Mode - nReg) / nReg * 100, 1)

The results are displayed in tables A.2. We do not either see a strong effect of the
reduction of the intervals (um, uM) and (vm, vM) on the final estimates. Again the main
reason is because these intervals are symmetric with respect to the prior modes and the
point estimates are central position measures of the posterior distributions.

50

A.5 fu ' Unif(um, uM), fv ' triang(Nm, NM , N
Reg)

Mean Length v

Length u 48 44 38 32 28 22 18 12 8 2
0.39 51.5 34.0 20.6 -8.2 -3.1 4.1 7.2 3.1 58.8 4.1
0.35 13.4 79.4 12.4 10.3 7.2 11.3 32.0 -6.2 1.0 -4.1
0.31 -6.2 64.9 -3.1 6.2 -15.5 4.1 9.3 11.3 4.1 0.0
0.26 -5.2 20.6 14.4 46.4 3.1 4.1 -12.4 -13.4 -5.2 0.0
0.22 48.5 -13.4 -7.2 -10.3 79.4 12.4 -10.3 -7.2 34.0 -3.1
0.18 -4.1 19.6 17.5 1.0 12.4 7.2 30.9 8.2 11.3 -3.1
0.14 12.4 21.6 11.3 -1.0 5.2 11.3 13.4 -5.2 10.3 -14.4
0.09 2.1 23.7 -9.3 11.3 -14.4 24.7 26.8 3.1 3.1 -2.1
0.05 22.7 23.7 8.2 15.5 16.5 -12.4 12.4 -8.2 -8.2 -13.4
0.01 1.0 14.4 19.6 -7.2 19.6 3.1 10.3 34.0 -1.0 -10.3

Median Length v

Length u 48 44 38 32 28 22 18 12 8 2
0.39 26.8 23.7 18.6 -8.2 -3.1 5.2 6.2 3.1 34.0 3.1
0.35 12.4 62.9 11.3 10.3 6.2 10.3 14.4 -6.2 0.0 -5.2
0.31 -7.2 42.3 -4.1 5.2 -16.5 3.1 7.2 10.3 4.1 -1.0
0.26 -5.2 19.6 14.4 30.9 2.1 3.1 -12.4 -13.4 -6.2 0.0
0.22 38.1 -13.4 -8.2 -10.3 68.0 12.4 -10.3 -7.2 20.6 -3.1
0.18 -5.2 18.6 16.5 0.0 11.3 7.2 23.7 7.2 7.2 -4.1
0.14 13.4 20.6 11.3 -1.0 4.1 10.3 13.4 -5.2 10.3 -13.4
0.09 1.0 21.6 -9.3 10.3 -14.4 19.6 24.7 3.1 2.1 -2.1
0.05 21.6 21.6 7.2 13.4 13.4 -12.4 12.4 -8.2 -8.2 -13.4
0.01 0.0 13.4 17.5 -7.2 13.4 3.1 9.3 35.1 -2.1 -10.3

Mode Length v

Length u 48 44 38 32 28 22 18 12 8 2
0.39 56.7 73.2 5.2 -1.0 -22.7 -13.4 -17.5 16.5 -29.9 20.6
0.35 -7.2 16.5 39.2 29.9 34.0 15.5 306.2 -15.5 -4.1 34.0
0.31 -14.4 246.4 -7.2 -2.1 -14.4 25.8 -21.6 6.2 -1.0 13.4
0.26 -16.5 20.6 10.3 -30.9 1.0 19.6 -11.3 -7.2 -1.0 4.1
0.22 15.5 -6.2 -12.4 -15.5 -19.6 10.3 8.2 -10.3 7.2 8.2
0.18 -4.1 20.6 5.2 -17.5 -1.0 -7.2 11.3 29.9 10.3 -8.2
0.14 36.1 10.3 36.1 -5.2 -2.1 18.6 19.6 -22.7 -12.4 -8.2
0.09 1.0 58.8 -9.3 9.3 -27.8 -13.4 -46.4 6.2 28.9 -1.0
0.05 48.5 4.1 -7.2 26.8 47.4 -6.2 17.5 -12.4 -19.6 -6.2
0.01 -28.9 52.6 -5.2 -13.4 30.9 22.7 -27.8 66.0 -16.5 -13.4

Table A.2 Relative bias (in percentage) for the posterior mean, median, and mode estimates for
priors fu ' Unif, fv ' triang, and fλ ' Gamma(α+ 1, N

Reg

α) with α = 1 (cv(λ) = 0.71) .

51

Appendix A Implementation details and examples of combinations of priors for pestim

A.6. fu ' Unif(um, uM), fv ' Gamma(α + 1, N
Reg

α
)

The same computation is exemplified now with fv ' Gamma(α + 1, N
Reg

α) and
log10(α) = −3,−2, . . . , 2, 3.
Load the libraries
library(pestim)
library(data.table)

Set the input data
nReg <- 97
nMNO <- 19

Set the priors and compute the estimates for each set of parameters
nPar <- 10
radShares <- seq(from = nMNO / nReg, to = 0.005, length.out = nPar)
aPopSizes <- 10ˆ{seq(-3, 3, by = 1)}
alpha <- 1
flambda <- list(’gamma’, shape = alpha + 1, scale = nReg / alpha)
results.Mean <- matrix(NA, ncol = length(aPopSizes), nrow = length(radShares))
results.Median <- matrix(NA, ncol = length(aPopSizes), nrow = length(radShares))
results.Mode <- matrix(NA, ncol = length(aPopSizes), nrow = length(radShares))
for(radShare.index in seq(along = radShares)) {

um <- nMNO / nReg - radShares[radShare.index]
uM <- nMNO / nReg + radShares[radShare.index]
fu <- list(’unif’, xMin = um, xMax = uM)
for (aPopSize.index in seq(along = aPopSizes)) {

fv <- list(’gamma’, shape = aPopSizes[aPopSize.index],
scale = nReg / aPopSizes[aPopSize.index])

auxResults <- postN0(nMNO, nReg, fu, fv, flambda)
results.Mean[radShare.index, aPopSize.index] <- auxResults[[’postMean’]]
results.Median[radShare.index, aPopSize.index] <- auxResults[[’postMedian’]]
results.Mode[radShare.index, aPopSize.index] <- auxResults[[’postMode’]]

}
}
rownames(results.Mean) <- round(2 * radShares, 2)
rownames(results.Median) <- round(2 * radShares, 2)
rownames(results.Mode) <- round(2 * radShares, 2)
colnames(results.Mean) <- aPopSizes
colnames(results.Median) <- aPopSizes
colnames(results.Mode) <- aPopSizes
relBias.Mean <- round((results.Mean - nReg) / nReg * 100, 1)
relBias.Median <- round((results.Median - nReg) / nReg * 100, 1)
relBias.Mode <- round((results.Mode - nReg) / nReg * 100, 1)

The results are displayed in tables A.3.

52

A.6 fu ' Unif(um, uM), fv ' Gamma(α+ 1, N
Reg

α)

Mean γ

Length u 0.001 0.01 0.1 1 10 100 1000
0.39 -13.4 -14.4 -14.4 -14.4 5.2 12.4 22.7
0.35 -13.4 -16.5 -14.4 -14.4 9.3 0.0 32.0
0.31 -12.4 -15.5 -15.5 -14.4 23.7 27.8 12.4
0.26 -10.3 -14.4 -15.5 9.3 18.6 24.7 -8.2
0.22 -16.5 -16.5 -15.5 -15.5 5.2 -4.1 -11.3
0.18 -15.5 -15.5 -15.5 -14.4 0.0 12.4 -11.3
0.14 -14.4 -15.5 -15.5 -15.5 5.2 6.2 20.6
0.09 -16.5 -15.5 -15.5 -15.5 6.2 12.4 11.3
0.05 -15.5 -16.5 -15.5 -15.5 15.5 -1.0 11.3
0.01 -14.4 -16.5 -16.5 -15.5 45.4 26.8 12.4

Median γ

Length u 0.001 0.01 0.1 1 10 100 1000
0.39 -13.4 -15.5 -14.4 -14.4 2.1 10.3 13.4
0.35 -13.4 -16.5 -15.5 -14.4 5.2 -1.0 15.5
0.31 -12.4 -15.5 -15.5 -14.4 20.6 24.7 11.3
0.26 -10.3 -14.4 -15.5 9.3 16.5 21.6 -8.2
0.22 -16.5 -16.5 -15.5 -15.5 2.1 -4.1 -11.3
0.18 -15.5 -15.5 -15.5 -14.4 -2.1 10.3 -11.3
0.14 -13.4 -15.5 -16.5 -15.5 2.1 5.2 15.5
0.09 -16.5 -15.5 -16.5 -14.4 3.1 12.4 9.3
0.05 -15.5 -16.5 -15.5 -15.5 11.3 -2.1 10.3
0.01 -14.4 -16.5 -16.5 -15.5 43.3 24.7 11.3

Mode γ

Length u 0.001 0.01 0.1 1 10 100 1000
0.39 -3.1 -22.7 -21.6 -9.3 11.3 7.2 20.6
0.35 -22.7 -32.0 -20.6 -20.6 46.4 -20.6 11.3
0.31 5.2 -22.7 -6.2 -7.2 33.0 -4.1 -32.0
0.26 -3.1 -9.3 -15.5 0.0 11.3 -2.1 -6.2
0.22 -26.8 -21.6 -13.4 -19.6 32.0 5.2 1.0
0.18 -21.6 -17.5 -12.4 -10.3 18.6 2.1 -14.4
0.14 -11.3 -5.2 -3.1 -18.6 24.7 6.2 -20.6
0.09 -20.6 -6.2 1.0 -19.6 -13.4 -25.8 33.0
0.05 -14.4 -17.5 -15.5 -32.0 51.5 3.1 13.4
0.01 -18.6 0.0 -7.2 -29.9 76.3 11.3 51.5

Table A.3 Relative bias (in percentage) for the posterior mean, median, and mode estimates for
priors fu ' Unif, fv ' Gamma, and fλ ' Gamma(α+ 1, N

Reg

α) with α = 1 (cv(λ) = 0.71) .

53

Appendix A Implementation details and examples of combinations of priors for pestim

A.7. fu ' Triang(um, uM , u∗), fv ' Unif(Nm, NM)

The same example is shown now for fu ' Triang and fv ' Unif. The hyperparame-
ters are chosen as before.
Load the libraries
library(pestim)
library(data.table)

Set the input data
nReg <- 97
nMNO <- 19

Set the priors and compute the estimates for each set of parameters
nPar <- 10
radShares <- seq(from = nMNO / nReg, to = 0.005, length.out = nPar)
radPopSizes <- round(seq(from = 0.25 * nReg, to = 1, length.out = nPar))
alpha <- 1
flambda <- list(’gamma’, shape = alpha + 1, scale = nReg / alpha)
results.Mean <- matrix(NA, ncol = nPar, nrow = nPar)
results.Median <- matrix(NA, ncol = nPar, nrow = nPar)
results.Mode <- matrix(NA, ncol = nPar, nrow = nPar)
for(radShare.index in seq(along = radShares)) {

um <- nMNO / nReg - radShares[radShare.index]
uM <- nMNO / nReg + radShares[radShare.index]
uMode <- nMNO / nReg
fu <- list(’triang’, xMin = um, xMax = uM, xMode = uMode)
for(radPopSize.index in seq(along = radPopSizes)) {

Nm <- nReg - radPopSizes[radPopSize.index]
NM <- nReg + radPopSizes[radPopSize.index]
fv <- list(’unif’, xMin = Nm, xMax = NM)
auxResults <- postN0(nMNO, nReg, fu, fv, flambda)
results.Mean[radShare.index, radPopSize.index] <- auxResults[[’postMean’]]
results.Median[radShare.index, radPopSize.index] <- auxResults[[’postMedian’]]
results.Mode[radShare.index, radPopSize.index] <- auxResults[[’postMode’]]

}
}
rownames(results.Mean) <- round(2 * radShares, 2)
rownames(results.Median) <- round(2 * radShares, 2)
rownames(results.Mode) <- round(2 * radShares, 2)
colnames(results.Mean) <- 2 * radPopSizes
colnames(results.Median) <- 2 * radPopSizes
colnames(results.Mode) <- 2 * radPopSizes
relBias.Mean <- round((results.Mean - nReg) / nReg * 100, 1)
relBias.Median <- round((results.Median - nReg) / nReg * 100, 1)
relBias.Mode <- round((results.Mode - nReg) / nReg * 100, 1)

The results are displayed in tables A.4.

54

A.7 fu ' Triang(um, uM , u
∗), fv ' Unif(Nm, NM)

Mean Length v

Length u 48 44 38 32 28 22 18 12 8 2
0.39 27.8 25.8 18.6 -5.2 -9.3 -8.2 -2.1 -7.2 9.3 -10.3
0.35 -3.1 -15.5 89.7 66.0 13.4 -2.1 24.7 11.3 -9.3 -12.4
0.31 2.1 79.4 0.0 -4.1 0.0 19.6 -6.2 3.1 32.0 0.0
0.26 -11.3 -11.3 15.5 0.0 22.7 3.1 -15.5 21.6 -7.2 6.2
0.22 27.8 27.8 17.5 15.5 -10.3 17.5 11.3 6.2 11.3 -8.2
0.18 1.0 26.8 23.7 2.1 18.6 -9.3 18.6 23.7 40.2 -9.3
0.14 -9.3 12.4 -3.1 -11.3 10.3 14.4 -5.2 24.7 19.6 2.1
0.09 26.8 -6.2 19.6 18.6 14.4 17.5 0.0 3.1 -5.2 3.1
0.05 -9.3 1.0 -16.5 17.5 17.5 -14.4 -9.3 -9.3 14.4 3.1
0.01 27.8 16.5 26.8 14.4 16.5 12.4 14.4 -5.2 6.2 -5.2

Median Length v

Length u 48 44 38 32 28 22 18 12 8 2
0.39 25.8 24.7 18.6 -5.2 -10.3 -8.2 -3.1 -7.2 8.2 -10.3
0.35 -3.1 -15.5 84.5 61.9 13.4 -2.1 14.4 10.3 -9.3 -12.4
0.31 1.0 67.0 -1.0 -5.2 -1.0 16.5 -6.2 3.1 19.6 -1.0
0.26 -11.3 -11.3 14.4 0.0 16.5 2.1 -15.5 14.4 -7.2 3.1
0.22 23.7 23.7 16.5 14.4 -10.3 17.5 10.3 5.2 10.3 -8.2
0.18 1.0 23.7 23.7 3.1 16.5 -9.3 13.4 15.5 41.2 -10.3
0.14 -10.3 11.3 -3.1 -11.3 8.2 12.4 -6.2 16.5 13.4 1.0
0.09 26.8 -6.2 15.5 17.5 13.4 17.5 0.0 1.0 -5.2 2.1
0.05 -9.3 0.0 -16.5 16.5 15.5 -14.4 -10.3 -9.3 10.3 2.1
0.01 23.7 15.5 17.5 12.4 12.4 11.3 12.4 -6.2 4.1 -5.2

Mode Length v

Length u 48 44 38 32 28 22 18 12 8 2
0.39 -17.5 -13.4 14.4 -16.5 -19.6 -6.2 20.6 2.1 18.6 -5.2
0.35 10.3 6.2 -32.0 24.7 10.3 -2.1 6.2 -10.3 -6.2 -10.3
0.31 29.9 172.2 1.0 3.1 3.1 2.1 -1.0 12.4 -23.7 6.2
0.26 -11.3 -11.3 26.8 -5.2 14.4 11.3 -14.4 -10.3 -8.2 19.6
0.22 175.3 37.1 -11.3 34.0 -8.2 21.6 27.8 19.6 -15.5 -13.4
0.18 -3.1 -35.1 10.3 -14.4 52.6 7.2 20.6 16.5 68.0 -32.0
0.14 -19.6 -9.3 4.1 -6.2 17.5 28.9 10.3 9.3 1.0 -6.2
0.09 -3.1 -8.2 0.0 81.4 4.1 19.6 -16.5 27.8 15.5 -29.9
0.05 -21.6 -19.6 -27.8 60.8 -25.8 -33.0 -1.0 -14.4 -17.5 -19.6
0.01 -7.2 10.3 48.5 30.9 28.9 -12.4 36.1 -4.1 8.2 1.0

Table A.4 Relative bias (in percentage) for the posterior mean, median, and mode estimates for
priors fu ' triang, fv ' Unif, and fλ ' Gamma(α+ 1, N

Reg

α) with α = 1 (cv(λ) = 0.71) .

55

Appendix A Implementation details and examples of combinations of priors for pestim

A.8. fu ' Triang(um, uM , u∗), fv ' Triang(Nm, NM , N
Reg)

Both prior distributions are considered to be triangular with the same choice for
hyperparameters.
Load the libraries
library(pestim)
library(data.table)

Set the input data
nReg <- 97
nMNO <- 19

Set the priors and compute the estimates for each set of parameters
nPar <- 10
radShares <- seq(from = nMNO / nReg, to = 0.005, length.out = nPar)
radPopSizes <- round(seq(from = 0.25 * nReg, to = 1, length.out = nPar))
alpha <- 1
flambda <- list(’gamma’, shape = alpha + 1, scale = nReg / alpha)
results.Mean <- matrix(NA, ncol = nPar, nrow = nPar)
results.Median <- matrix(NA, ncol = nPar, nrow = nPar)
results.Mode <- matrix(NA, ncol = nPar, nrow = nPar)
for(radShare.index in seq(along = radShares)) {

um <- nMNO / nReg - radShares[radShare.index]
uM <- nMNO / nReg + radShares[radShare.index]
uMode <- nMNO / nReg
fu <- list(’triang’, xMin = um, xMax = uM, xMode = uMode)
for(radPopSize.index in seq(along = radPopSizes)) {

Nm <- nReg - radPopSizes[radPopSize.index]
NM <- nReg + radPopSizes[radPopSize.index]
Nmode <- nReg
fv <- list(’triang’, xMin = Nm, xMax = NM, xMode = nReg)
auxResults <- postN0(nMNO, nReg, fu, fv, flambda)
results.Mean[radShare.index, radPopSize.index] <- auxResults[[’postMean’]]
results.Median[radShare.index, radPopSize.index] <- auxResults[[’postMedian’]]
results.Mode[radShare.index, radPopSize.index] <- auxResults[[’postMode’]]

}
}
rownames(results.Mean) <- round(2 * radShares, 2)
rownames(results.Median) <- round(2 * radShares, 2)
rownames(results.Mode) <- round(2 * radShares, 2)
colnames(results.Mean) <- 2 * radPopSizes
colnames(results.Median) <- 2 * radPopSizes
colnames(results.Mode) <- 2 * radPopSizes
relBias.Mean <- round((results.Mean - nReg) / nReg * 100, 1)
relBias.Median <- round((results.Median - nReg) / nReg * 100, 1)
relBias.Mode <- round((results.Mode - nReg) / nReg * 100, 1)

The results are displayed in tables A.5.

56

A.8 fu ' Triang(um, uM , u
∗), fv ' Triang(Nm, NM , N

Reg)

Mean Length v

Length u 48 44 38 32 28 22 18 12 8 2
0.39 2.1 120.6 1.0 -13.4 -10.3 15.5 2.1 23.7 1.0 -9.3
0.35 21.6 19.6 12.4 55.7 2.1 61.9 -8.2 0.0 4.1 51.5
0.31 82.5 39.2 -4.1 8.2 -14.4 6.2 -7.2 7.2 39.2 -9.3
0.26 -12.4 17.5 2.1 19.6 17.5 -10.3 14.4 7.2 4.1 21.6
0.22 -6.2 13.4 12.4 58.8 68.0 16.5 5.2 9.3 2.1 3.1
0.18 -1.0 -6.2 18.6 13.4 5.2 -4.1 10.3 6.2 30.9 -11.3
0.14 3.1 23.7 -3.1 10.3 8.2 -12.4 15.5 11.3 27.8 -4.1
0.09 20.6 21.6 5.2 0.0 -2.1 14.4 -14.4 -8.2 6.2 -14.4
0.05 20.6 -9.3 -3.1 -6.2 16.5 -8.2 11.3 36.1 -11.3 1.0
0.01 -4.1 15.5 19.6 1.0 11.3 7.2 14.4 -13.4 5.2 7.2

Median Length v

Length u 48 44 38 32 28 22 18 12 8 2
0.39 2.1 89.7 1.0 -13.4 -10.3 13.4 2.1 12.4 -1.0 -9.3
0.35 19.6 19.6 11.3 51.5 1.0 56.7 -8.2 -1.0 4.1 42.3
0.31 72.2 22.7 -4.1 7.2 -14.4 6.2 -7.2 6.2 25.8 -9.3
0.26 -12.4 17.5 2.1 17.5 17.5 -10.3 13.4 5.2 2.1 11.3
0.22 -5.2 13.4 12.4 54.6 67.0 13.4 4.1 7.2 1.0 3.1
0.18 -2.1 -7.2 16.5 12.4 5.2 -5.2 9.3 5.2 23.7 -11.3
0.14 2.1 13.4 -4.1 10.3 8.2 -13.4 12.4 10.3 27.8 -5.2
0.09 20.6 20.6 4.1 0.0 -3.1 13.4 -14.4 -8.2 5.2 -14.4
0.05 21.6 -9.3 -3.1 -6.2 7.2 -9.3 9.3 35.1 -11.3 0.0
0.01 -4.1 14.4 18.6 0.0 10.3 6.2 11.3 -13.4 4.1 6.2

Mode Length v

Length u 48 44 38 32 28 22 18 12 8 2
0.39 -12.4 29.9 40.2 -15.5 -20.6 4.1 -3.1 53.6 -15.5 -29.9
0.35 -20.6 48.5 -14.4 -37.1 3.1 125.8 3.1 -18.6 11.3 35.1
0.31 -57.7 144.3 -5.2 -34.0 -16.5 -5.2 -8.2 2.1 -34.0 1.0
0.26 -17.5 38.1 33.0 0.0 -4.1 1.0 17.5 17.5 18.6 -13.4
0.22 -7.2 49.5 50.5 54.6 108.2 187.6 4.1 -18.6 3.1 -3.1
0.18 -2.1 -28.9 56.7 -18.6 -10.3 1.0 47.4 -5.2 133.0 -20.6
0.14 1.0 76.3 -1.0 40.2 14.4 -8.2 14.4 34.0 61.9 -13.4
0.09 -26.8 -13.4 -3.1 -10.3 -9.3 -21.6 -18.6 -22.7 -5.2 -18.6
0.05 15.5 -14.4 5.2 -16.5 -48.5 14.4 -5.2 55.7 1.0 17.5
0.01 1.0 20.6 27.8 -17.5 43.3 18.6 50.5 -23.7 -8.2 6.2

Table A.5 Relative bias (in percentage) for the posterior mean, median, and mode estimates for
priors fu ' triang, fv ' triang, and fλ ' Gamma(α+ 1, N

Reg

α) with α = 1 (cv(λ) = 0.71) .

57

Appendix A Implementation details and examples of combinations of priors for pestim

A.9. fu ' Triang(um, uM , u∗), fv ' Gamma(a+ 1, N
Reg

a
)

In the last example we combined a triangular distribution for fu and a gamma
distribution for fv.
Load the libraries
library(pestim)
library(data.table)

Set the input data
nReg <- 97
nMNO <- 19

Set the priors and compute the estimates for each set of parameters
nPar <- 10
radShares <- seq(from = nMNO / nReg, to = 0.005, length.out = nPar)
aPopSizes <- 10ˆ{seq(-3, 3, by = 1)}
alpha <- 1
flambda <- list(’gamma’, shape = alpha + 1, scale = nReg / alpha)
results.Mean <- matrix(NA, ncol = length(aPopSizes), nrow = length(radShares))
results.Median <- matrix(NA, ncol = length(aPopSizes), nrow = length(radShares))
results.Mode <- matrix(NA, ncol = length(aPopSizes), nrow = length(radShares))
for(radShare.index in seq(along = radShares)) {

um <- nMNO / nReg - radShares[radShare.index]
uM <- nMNO / nReg + radShares[radShare.index]
uMode <- nMNO / nReg
fu <- list(’triang’, xMin = um, xMax = uM, xMode = uMode)
for(aPopSize.index in seq(along = aPopSizes)) {

fv <- list(’gamma’, shape = aPopSizes[aPopSize.index],
scale = nReg / aPopSizes[aPopSize.index])

auxResults <- postN0(nMNO, nReg, fu, fv, flambda)
results.Mean[radShare.index, aPopSize.index] <- auxResults[[’postMean’]]
results.Median[radShare.index, aPopSize.index] <- auxResults[[’postMedian’]]
results.Mode[radShare.index, aPopSize.index] <- auxResults[[’postMode’]]

}
}
rownames(results.Mean) <- round(2 * radShares, 2)
rownames(results.Median) <- round(2 * radShares, 2)
rownames(results.Mode) <- round(2 * radShares, 2)
colnames(results.Mean) <- aPopSizes
colnames(results.Median) <- aPopSizes
colnames(results.Mode) <- aPopSizes
relBias.Mean <- round((results.Mean - nReg) / nReg * 100, 1)
relBias.Median <- round((results.Median - nReg) / nReg * 100, 1)
relBias.Mode <- round((results.Mode - nReg) / nReg * 100, 1)

The results are displayed in tables A.6.

58

A.9 fu ' Triang(um, uM , u
∗), fv ' Gamma(a+ 1, N

Reg

a)

Mean γ

Length u 0.001 0.01 0.1 1 10 100 1000
0.39 -12.4 -14.4 -14.4 -16.5 7.2 0.0 73.2
0.35 -10.3 -13.4 -14.4 -16.5 29.9 -12.4 -9.3
0.31 -13.4 -15.5 -15.5 -13.4 1.0 -11.3 -13.4
0.26 -9.3 -16.5 -15.5 -11.3 1.0 3.1 3.1
0.22 -14.4 -14.4 -15.5 -14.4 10.3 23.7 12.4
0.18 -15.5 -15.5 -15.5 -14.4 7.2 29.9 13.4
0.14 -15.5 -15.5 -16.5 -15.5 4.1 -12.4 -10.3
0.09 -15.5 -14.4 -15.5 -15.5 33.0 14.4 4.1
0.05 -15.5 -15.5 -16.5 -15.5 18.6 12.4 17.5
0.01 -13.4 -15.5 -16.5 -15.5 -5.2 22.7 -11.3

Median γ

Length u 0.001 0.01 0.1 1 10 100 1000
0.39 -12.4 -15.5 -14.4 -16.5 4.1 -2.1 58.8
0.35 -10.3 -13.4 -15.5 -16.5 26.8 -12.4 -9.3
0.31 -12.4 -15.5 -15.5 -13.4 -2.1 -11.3 -13.4
0.26 -10.3 -16.5 -15.5 -11.3 -1.0 2.1 3.1
0.22 -14.4 -14.4 -15.5 -14.4 6.2 18.6 10.3
0.18 -15.5 -15.5 -15.5 -14.4 5.2 27.8 12.4
0.14 -16.5 -15.5 -16.5 -16.5 1.0 -12.4 -11.3
0.09 -15.5 -15.5 -16.5 -15.5 25.8 14.4 3.1
0.05 -15.5 -16.5 -16.5 -15.5 15.5 11.3 11.3
0.01 -13.4 -16.5 -16.5 -15.5 -8.2 19.6 -12.4

Length u 0.001 0.01 0.1 1 10 100 1000
0.39 -15.5 -18.6 -20.6 -16.5 15.5 -7.2 143.3
0.35 9.3 -23.7 -13.4 -11.3 -17.5 -19.6 -10.3
0.31 -4.1 -28.9 -13.4 -9.3 -36.1 -24.7 -13.4
0.26 1.0 -23.7 1.0 -21.6 2.1 -2.1 3.1
0.22 -21.6 -12.4 -13.4 -6.2 11.3 0.0 -18.6
0.18 -10.3 -12.4 -28.9 -28.9 1.0 -26.8 4.1
0.14 -34.0 -37.1 -11.3 -15.5 6.2 -20.6 0.0
0.09 -8.2 -2.1 -9.3 -11.3 53.6 15.5 28.9
0.05 -9.3 -29.9 -18.6 -16.5 -22.7 -11.3 18.6
0.01 -7.2 -7.2 -10.3 -12.4 34.0 -1.0 -17.5

Table A.6 Relative bias (in percentage) for the posterior mean, median, and mode estimates for
priors fu ' triang, fv ' Gamma, and fλ ' Gamma(α+ 1, N

Reg

α) with α = 1 (cv(λ) = 0.71) .

59

Appendix B

Documentation manual of package pestim

61

Package ‘pestim’
March 16, 2018

Type Package

Title Population Estimations Using Mobile Phone Data

Version 0.1.0

Description This package contains functions that implement a simple
hierarchical model to estimate the population counts of different territorial
cells combining the information from aggregated mobile phone data and a
population register or survey data.

License GPL-3 and EUPL

Encoding UTF-8

LazyData true

Depends R (>= 3.3.0)

Imports data.table (>= 1.10.4),
Rcpp (>= 0.12.12),
MCMCpack (>= 1.4-2)

LinkingTo Rcpp

RoxygenNote 5.0.1

Collate 'MobPop.R'
'ratioBeta.R'
'kummer.R'
'Phi.R'
'RcppExports.R'
'alphaPrior.R'
'dg.R'
'triang.R'
'dlambda.R'
'flambda.R'
'fu.R'
'fv.R'
'genAlpha.R'
'genUV.R'
'modeLambda.R'
'nMNO_ini.R'
'nReg.R'
'pestim.R'
'rlambda.R'
'rN0.R'
'postN0.R'

1

2 alphaPrior

'rmatProb.R'
'rNtcondN0.R'
'rNt.R'
'postNt.R'
'postNtcondN0.R'
'rg.R'
'rp.R'

R topics documented:
alphaPrior . 2
dg . 4
dlambda . 5
dtriang . 7
flambda . 8
fu . 8
fv . 9
genAlpha . 9
genUV . 10
kummer . 11
MobPop . 12
modeLambda . 12
nMNO_ini . 14
nReg . 14
pestim . 14
Phi . 16
postN0 . 17
postNt . 18
postNtcondN0 . 20
ratioBeta . 21
rg . 21
rlambda . 22
rmatProb . 24
rN0 . 25
rNt . 26
rNtcondN0 . 28
rp . 30

Index 31

alphaPrior Generate prior distributions for parameters of the Dirichlet distribu-
tion.

Description

Generate a list of prior distributions for the parameters of the Dirichlet distribution in the hierar-
chical model. Each component of the list corresponds to the prior distribution of the parameter
αij(t0, tn) for each cell j. This function initial works over a fixed initial cell i. Each returned dis-
tribution is specified as a list with an identification name as first component and named components
with the distribution parameters for the rest of components.

alphaPrior 3

Usage

alphaPrior(nMNOfrom, names, variation)

Arguments

nMNOfrom numeric vector with the number of individuals moving from the initial cell to
the rest of cells (including those remaining)

names character vector with the names of the prior distributions for each cell

variation list of lists whose components are parameters providing a measure of variation
of each prior distribution

Details

The function takes the number of cells from the input parameter nMNOfrom which specifies the
number of individuals detected by the network moving from the initial cell to each of the cells
(including those remaining in the same). The function executes the same construction for each
final cell. It takes the name of prior distribution from the input parameter names and construct the
corresponding prior distribution for each cell j with mode at u∗j = Nj , where Nj is taken from
nMNOfrom. Next the rest of parameters of the distribution are computed according to the dispersion
parameters specified in variation.

As accepted distribution names, currently the user can specify unif, degen, triang, and gamma.

The dispersion parameters recognised so far are the coefficients of variation only (standard deviation
divided by the mean of the distribution). These dispersion parameters must be specified by a named
component cv with a numeric value in [0, 1].

For each distribution the parameters are computed as follows:

• unif: This is the uniform distribution with parameters xMax and xMin. Both parameters are
computed by u∗j · (1±

√
3cv), respectively, in each cell j.

• degen: This is the degenerate distribution with parameter X0 taken as u∗j in each cell j.

• triang: This is the triangular distribution dtriang with parameters xMax, xMin, and xMode.
The latter is taken directly from nMNOfrom. The distribution is assumed to be symmetrical so
that the two former parameters are computed by u∗j · (1±

√
3cv), respectively, in each cell j.

• gamma: This is the gamma distribution with parameters shape and scale. The former is
computed as 1

cv2 and the latter as fracu∗j scale− 1.

Value

Return a list with a list in each component specifying the prior for each cell

Examples

Three cells. Cell 1 under study. 10 individuals remain.
alphaPrior(c(10, 3, 4), c('unif', 'triang', 'gamma'),

list(list(cv = 0.1), list(cv = 0.05), list(cv = 0.15)))

4 dg

dg Density function of a candidate distribution in the accept-reject
method.

Description

Generate values of a candidate distribution density function in the accept-reject method of genera-
tion of random variables applied to the distribution of the lambda parameter

Usage

dg(lambda, nMNO, nReg, fu, fv, flambda, relTol = 1e-06, nSim = 10000,
nStrata = c(1, 100), verbose = FALSE)

Arguments

lambda numeric vector with the lambda parameter values

nMNO, nReg non-negative integer vectors with the number of individuals detected in
each cell according to the network operator and the register

fu, fv named lists with the prior marginal distributions of the two-dimensional points
for the Monte Carlo integration

flambda named list with the prior distribution of the lambda parameter

relTol relative tolerance in the computation of the kummer function. Default value is
1e-6

nSim number of two-dimensional points to generate to compute the integral. Default
value is 1e4

nStrata integer vector of length 2 with the number of strata in each dimension. Default
value is c(1, 1e2)

verbose logical (default FALSE) to report progress of the computation

Details

The candidate distribution is a gamma distribution with parameters shape = nMNO + 1 and scale =
λ∗ / nMNO, where λ∗ stands for the mode of the posterior distribution of the lambda parameter.

It is important to know that currently this function accepts only parameters for a single cell at a
time. In case of interest for the candidate density function values for a set of cells, the user should
program his/her own routine to apply this function to every cell.

Value

dg generates length(lambda) values of the density probability function of the candidate distribu-
tion in the accept-reject method.

See Also

modeLambda, dlambda for related functions.

dlambda 5

Examples

curve(dg(x, nMNO = 20, nReg = 115, fu = list('unif', xMin = 0.3, xMax = 0.5),
fv = list('unif', xMin = 100, xMax = 120),
flambda = list('gamma', shape = 11, scale = 12)), xlim = c(0, 150),
main = '', ylab = 'density', xlab = 'lambda')

dlambda Posterior density function of the lambda parameter.

Description

Compute the unnormalized posterior density function of the parameter λ in the hierarchical model
to estimate population counts given by

f(λ
∣∣NMNO;NNreg) ∝ f(λ) · dpois(NMNO;λ) · S(λ;NMNO, NNreg),

where dpois is the probability density function of a Poisson distribution and S is defined in the
bibliographic reference.

Usage

dlambda(lambda, nMNO, nReg, fu, fv, flambda, relTol = 1e-06, nSim = 1000,
nStrata = c(1, 100), verbose = FALSE)

Arguments

lambda numeric vector

nMNO, nReg non-negative integer vectors with the number of individuals detected in
each cell according to the network operator and the register

fu, fv named lists with the prior marginal distributions of the two-dimensional points
for the Monte Carlo integration

flambda named list with the prior distribution of the lambda parameter

relTol relative tolerance in the computation of the kummer function. Default value is
1e-6

nSim number of two-dimensional points to generate to compute the integral. Default
value is 1e3

nStrata integer vector of length 2 with the number of strata in each dimension. Default
value is c(1, 1e2)

verbose logical (default FALSE) to report progress of the computation

Details

The lengths of the input vectors nMNO and nReg must be both equal to 1 and independent of the length
of the input vector lambda. The integral is computed using with Monte Carlo techniques using nSim
points for each of the values lambda specified so that the final data.table has length(lambda) rows.

The prior distributions are specified as named lists where the first component of each list must be the
name of distribution (’unif’, ’triang’, ’degen’, ’gamma’) and the rest components must be named
according to the name of the parameters of the random generator of the corresponding distribution
according to:

6 dlambda

• unif: xMin, xMax for the minimum, maximum of the sampled interval.

• degen: x0 for the degenerate value of the random variable.

• triang: xMin, xMax, xMode for minimum, maximum and mode (see qtriang).

• gamma: scale and shape with the same meaning as in rgamma.

It is important to know that currently this function accepts only parameters for a single cell at a
time. In case of interest for the density function values for a set of cells, the user should program
his/her own routine to apply this function to every cell.

Value

dlambda returns a data.table with the values of the density function (column probLambda) for each
value of lambda together with additional variables:

• The common length of nMNO and nReg identifies the number of territorial cells in which the
number of individuals detected by the telecommunication network and official data. The col-
umn cellID identifies these territorial cells.

• The length of lambda identifies the number of parameters upon which the integral will be
computed in each cell. The column parID identifies each of these input parameters.

• The inputs nMNO and nReg are also included in the output data.table in columns under the same
name.

• The value on the integral times the Poisson density function ifalso included under the column
integral

References

https://github.com/MobilePhoneESSnetBigData

See Also

genUV, Phi for related functions.

Examples

This data.table must have 5x3= 15 rows
dlambda(seq(0, 1, length.out = 5),

nMNO = c(20, 17, 25), nReg = c(115, 123, 119),
fu = list('unif', xMin = 0.3, xMax = 0.5), fv = list('gamma', shape = 11, scale = 12),
flambda = list('gamma', shape = 11, scale = 12))

Easily, a function to draw conditioned on the parameters:
f <- function(x){

dlambda(x, nMNO = 20, nReg = 115,
fu = list('unif', xMin = 0.3, xMax = 0.5), fv = list('unif', xMin = 100, xMax = 120),
flambda = list('gamma', shape = 11, scale = 12))$probLambda

}
curve(f, xlim = c(0, 150))

dtriang 7

dtriang The Triangular Distribution.

Description

Density, distribution funtion, quantile function and random generation for the triangular distribution

Usage

dtriang(x, xMin, xMax, xMode)

Arguments

x, q vector of quantiles

xMin vector with the minimum values of the range of the random variable

xMax vector with the maximum values of the range of the random variable

xMode vector with the modes of the random variable

p vector pf probabilities

n number of observations

Value

dtriang gives the density, ptriang gives the distribution function, qtriang gives the quantile
function, and rtriang generates random deviates.

The lengths of the input vectors (except n) must be all equal except when their length is 1. Otherwise
NAs are produced.

See Also

Distributions for other distributions

Examples

curve(dtriang(x, 0, 3, 1), xlim = c(0, 3))
curve(ptriang(x, 0, 3, 1), xlim = c(0, 3))
curve(qtriang(x, 0, 3, 1), xlim = c(0, 1))
hist(rtriang(1e6, 0, 3, 1), breaks = seq(0, 3, by = 0.01))

8 fu

flambda List of priors for the parameter lambda for the dataset MobPop.

Description

This list contains the priors for each of the 12 cells of the simulated populated included in the
data.table MobPop.

Usage

flambda

Format

A list with 12 components each of which is a list with three components:

name of the prior distribution (gamma in all cases in this example)

xMin shape parameter for the gamma prior distribution of each cell

xMax scale parameter for the gamma prior distribution of each cell

fu List of priors for the parameter u for the dataset MobPop.

Description

This list contains the priors for each of the 12 cells of the simulated populated included in the
data.table MobPop (see function genUV).

Usage

fu

Format

A list with 12 components each of which is a list with three components:

name of the prior distribution (unif in all cases in this example)

xMin minimum value of the range of values of the uniform prior distribution of each cell

xMax maximum value of the range of values of the uniform prior distribution of each cell

fv 9

fv List of priors for the parameter v for the dataset MobPop.

Description

This list contains the priors for each of the 12 cells of the simulated populated included in the
data.table MobPop (see function genUV).

Usage

fv

Format

A list with 12 components each of which is a list with three components:

name of the prior distribution (unif in all cases in this example)
xMin minimum value of the range of values of the uniform prior distribution of each cell
xMax maximum value of the range of values of the uniform prior distribution of each cell

genAlpha Generate values for the parameters of the Dirichlet distribution.

Description

Generate a matrix of values of the parameters αij(t0, tn) of the Dirichlet distribution in the hierar-
chical model. This function initial works over a fixed initial cell i under study.

Usage

genAlpha(nSim, flist)

Arguments

nSim number of values to generate
flist list with the prior distributions for each cell

Details

This function generates the nSim random values according to the prior of each cell specified in
flist.

The prior distributions are specified as named lists where the first component of each list must be the
name of distribution (’unif’, ’triang’, ’degen’, ’gamma’) and the rest of components must be named
according to the name of the parameters of the random generator of the corresponding distribution
according to:

• unif: xMin, xMax for the minimum, maximum of the sampled interval.
• degen: x0 for the degenerate value of the random variable.
• triang: xMin, xMax, xMode for minimum, maximum and mode (see qtriang).
• gamma: scale and shape with the same meaning as in rgamma.

10 genUV

Value

Return a matrix with as many columns as cells and as many rows as number of generated values

Examples

priors <- alphaPrior(c(10, 3, 4), c('unif', 'triang', 'gamma'),
list(list(cv = 0.1), list(cv = 0.05), list(cv = 0.15)))

genAlpha(10, priors)

genUV Generation of two-dimensional random deviates.

Description

Generate two-dimensional random deviates for a Monte Carlo computation of the integral
∫ ∞

0

dvf2(v)

∫ ∞

0

f1(u) Φ(u · v, (1− u) · v;λ,NMNO, NReg).

The Monte Carlo technique makes use of stratified importance sampling.

Usage

genUV(nSim, nStrata, f1, f2, lambda, nMNO, nReg)

Arguments

nSim number of two-dimensional points to generate

nStrata integer vector of length 2 with the number of strata in each dimension

f1, f2 named lists with the prior marginal distributions of the two-dimensional points

lambda numeric vector

nMNO, nReg non-negative integer vectors

Details

The lengths of the input vectors nMNO and nReg must be equal and independent of the length of the
input vector lambda. Notice that nSim points are generated for each of the length(nMNO)×length(lambda)
combinations so that the final data.table has nSim×length(nMNO) ×length(lambda) rows.

The prior distributions are specified as named lists where the first component of each list must be the
name of distribution (’unif’, ’triang’, ’degen’, ’gamma’) and the rest components must be named
according to the name of the parameters of the random generator of the corresponding distribution
according to:

• unif: xMin, xMax for the minimum, maximum of the sampled interval.

• degen: x0 for the degenerate value of the random variable.

• triang: xMin, xMax, xMode for minimum, maximum and mode (see qtriang).

• gamma: scale and shape with the same meaning as in rgamma.

kummer 11

Value

genUV returns a data.table with the (u,v) coordinates of each point together with additional variables:

• The common length of nMNO and nReg identifies the number of territorial cells in which the
number of individuals detected by the telecommunication network and official data. The col-
umn cellID identifies these territorial cells.

• The length of lambda identifies the number of parameters upon which the integral will be
computed in each cell. The column parID identifies each of these input parameters.

• Stratum_u and Stratum_v jointly identify each stratum in which the region of integration has
been divided with the stratification.

See Also

runif, qtriang, rgamma for related functions.

Examples

This data.table must have 10x5x3= 150 rows and only one stratum
genUV(nSim = 10, nStrata = c(1, 1),

f1 = list('unif', xMin = 0.3, xMax = 0.5), f2 = list('gamma', shape = 11, scale = 12),
lambda = seq(0, 1, length.out = 5),
nMNO = c(20, 17, 25), nReg = c(115, 123, 119))

kummer Confluent hypergeometric or Kummer function

Description

Partial implementation of the confluent hypergeometric function 1F1(x; a; b)

Usage

kummer(x, a, b, relTol = 1e-06)

Arguments

x, a, b numeric vectors of the same length
relTol relative tolerance (default value 1e-6) understood as the ratio of each term in

the series relative to the sum

Details

This function is implemented in C++. It is based on Pearson et al (2016). It only implements the
Taylor series method together with an asymtoptic expansion based on Watson’s lemma

Value

Return a numeric vector with the values of the function

Author(s)

Luis Sanguiao Bogdan Oancea

12 modeLambda

MobPop Dataset with simulated data for population counts.

Description

This dataset provides population counts moving from each pair of cells at succesive time instants
for a simulated true population, a corresponding official population in a register and a population
detected with a mobile telecommunication network.

Usage

MobPop

Format

A data.table with 96768 rows and 6 variables:

ID_CELL_INI identification code for each initial cell in the displacements

ID_CELL_END identification code for each final cell in the displacements

ID_T identification code of each time moment. It is very important to underline that the table
collects always displacements between the initial time instant and the corresponding time
instant specified by ID_T

N_REG counts according to the population register. Note that these counts do not evolve in time

N_0 counts of the simulated true population

N_MNO_1 counts of individuals detected by the Mobile Network Operator

modeLambda Mode of the posterior density function of the lambda parameter.

Description

Compute the mode of the unnormalized posterior density function of the parameter λ in the hierar-
chical model to estimate population counts.

Usage

modeLambda(nMNO, nReg, fu, fv, flambda, relTol = 1e-06, nSim = 10000,
nStrata = c(1, 100), verbose = FALSE)

Arguments

nMNO, nReg non-negative integer vectors with the number of individuals detected in
each cell according to the network operator and the register

fu, fv named lists with the prior marginal distributions of the two-dimensional points
for the Monte Carlo integration

flambda named list with the prior distribution of the lambda parameter

relTol relative tolerance in the computation of the kummer function. Default value is
1e-6

modeLambda 13

nSim number of two-dimensional points to generate to compute the integral. Default
value is 1e4

nStrata integer vector of length 2 with the number of strata in each dimension. Default
value is c(1, 1e2)

verbose logical (default FALSE) to report progress of the computation

Details

The lengths of the input vectors nMNO and nReg must be equal. Currently the optimization algorithm
is a simple direct algorithm taking into account the form of the density function.

The prior distributions are specified as named lists where the first component of each list must be the
name of distribution (’unif’, ’triang’, ’degen’, ’gamma’) and the rest components must be named
according to the name of the parameters of the random generator of the corresponding distribution
according to:

• unif: xMin, xMax for the minimum, maximum of the sampled interval.

• degen: x0 for the degenerate value of the random variable.

• triang: xMin, xMax, xMode for minimum, maximum and mode (see qtriang).

• gamma: scale and shape with the same meaning as in rgamma.

Value

modeLambda returns a vector with the values of the mode of the density function (column probLambda)
for each cell.

See Also

dlambda for the function to maximize.

Examples

This data.table must have 5x3= 15 rows
modeLambda(nMNO = c(20, 17, 25), nReg = c(115, 123, 119),

fu = list(list('unif', xMin = 0.3, xMax = 0.5),
list('unif', xMin = 0.35, xMax = 0.45),
list('unif', xMin = 0.25, xMax = 0.43)),

fv = list(list('gamma', shape = 11, scale = 12),
list('gamma', shape = 12, scale = 12.3),
list('gamma', shape = 13, scale = 11.5)),

flambda = list(list('gamma', shape = 11, scale = 12),
list('gamma', shape = 12, scale = 12.3),
list('gamma', shape = 13, scale = 12)))

14 pestim

nMNO_ini Counts of individuals for the initial time period detected by the mobile
network operator.

Description

This vector contains the counts of individuals for the initial time period detected by the mobile
network operator in each of the 12 cells.

Usage

nMNO_ini

Format

A vector with 12 components.

nReg Population counts for the initial time period according to the popula-
tion register.

Description

This vector contains the population counts for the initial time period according to the population
register.

Usage

nReg

Format

A vector with 12 components.

pestim pestim: a hierarchical model to estimate population counts with ag-
gregated mobile phone data.

Description

This package provides an implementation for a hierarchical model to combine both aggregated
mobile phone data and external official (administrative or survey) data to produce estimates of
population counts in each cell of a division of a territory.

pestim 15

Context

This package has been developed in the context of a European research project within the European
Statistical System called ESSnet on Big Data. More specifically this work corresponds to the work
package on mobile phone data by which we assess the use of this data source in the production of
official statistics. The goals of the project is many-fold. Firstly, the issue of accessing these data for
the production of official statistics initially for research and then for standard production has been
investigated. Secondly, in a hands-on bottom-up approach, we make some initial methodological
proposals to produce concrete statistical output using those data sets compiled in the preceding
phase. Thirdly, in parallel, IT tools, architecture and software development are assessed especially
in contrast to traditional computer frameworks. Finally, quality is appraised especially in the context
of the European Statistics Code of Practice and ESS Quality Assurance Framework. This package
provides a first-step implementation of software routines to present a proof of concept about a
methodological proposal (see below) to make inferences about a target population from a mobile
phone dataset.

The hierarchical model in a nutshell

The methodological proposal giving rise to this package focuses on the inference exercise connect-
ing aggregated mobile phone data with a target population under analysis. In concrete, the goal is to
provide estimates of population counts in each cell in which we have divided the territory for which
the telecommunication network provides count data. The estimation is assisted with official data at
a larger time scale (either from a population register or from a survey).

The model rests on two working assumptions:

• Given that mobile phone data and official data operate at different time scales, we assume
that there exists an initial time instant in which we can equate population figures from both
sources.

• The mobility patterns of individuals do not depend on the mobile network operator which they
are subscribed to.

The model works in two stages. Firstly at the initial time instant, we use data from both sources to
make the inference for the actual population counts in each cell. Secondly, the time evolution of
these counts are produced using the transition matrices from cell to cell of individuals provided by
the mobile network operator.

The essence of the model is to emulate the ecological sampling setting in which the number of
detected individuals in each cell follows a binomial distribution Bin(Ni, pi) whose parameter Ni

is the target of the model and is assigned a weakly informative prior and the detection probability is
also assigned a weakly informative prior based upon both data sources.

Computational paradigm

Computations are conducted following the Bayesian paradigm. In this sense the generation of
simulated populations according to different probability distributions is at the core of the package.
In this sense the package contains basically three types of functions:

• Auxiliary functions, providing computation of mathematical functions such as the ratio of
two beta functions, the confluent hypergeometric function, an optimization routine for a con-
crete probability distribution, etc. Examples of these functions are ratioBeta, kummer, Phi,
modeLambda.

• Distribution-relation functions, providing computation regarding the generation of random de-
viates according to different probability distributions comprising both priors, posteriors, and

16 Phi

the generation of parameter specifications for these distributions. Examples of these func-
tions are dtriang, rtriang, ptriang, qtriang, dlambda, rlambda, rmatProb, rN0, rNt,
rNtcondN0, rg, rp, alphaPrior, genAlpha, genUV.

• Estimation-relation functions, providing computation of estimates based upon the populations
generated with the preceding functions. Examples of these functions are postN0, postNt,
postNtcondN0.

Phi The product of ratioBeta and Kummer functions

Description

Compute the product of ratioBeta and kummer functions with a specific set of arguments

Usage

Phi(alpha, beta, lambda, n, relTol = 1e-06)

Arguments

alpha, beta non-negative numeric vectors

lambda numeric vector

n non-negative integer vector

relTol relative tolerance in the computation of the kummer function. Default value is
1e-6

Value

Phi returns B(alpha+m,beta+n)
B(alpha,beta) · 1F1(lambda; alpha; beta), where 1F1 stands for the confluent

hypergeometric function

The lengths of the input vectors must be all equal except when their length is 1, which are recycled.
Otherwise NAs are produced.

See Also

ratioBeta, kummer for related functions.

Examples

Phi(1, 1, 0.5, 10)
Phi(1:10, 10:1, seq(0, 1, length.out = 10), 3)
Phi(1:4, 4:1, c(2, 3), c(4, 3, 1))

postN0 17

postN0 Posterior mean, median, and mode for the number of individuals at
the initial time.

Description

Compute the posterior mean, median, and mode for the number of individuals generating posterior
distribution according to the hierarchical model at the initial time instant

Usage

postN0(nMNO, nReg, fu, fv, flambda, n = 1000, scale = 1, relTol = 1e-08,
nSim = 1000, nStrata = c(1, 100), verbose = FALSE)

Arguments

nMNO, nReg non-negative integer vectors with the number of individuals detected in
each cell according to the network operator and the register

fu, fv named lists with the prior marginal distributions of the two-dimensional points
for the Monte Carlo integration

flambda named list with the prior distribution of the lambda parameter

n number of points to generate in the posterior distribution for the computation.
Default value is 1e3

scale numeric vector with the scale to count the number of individuals. Default value
is 1

relTol relative tolerance in the computation of the kummer function. Default value is
1e-6

nSim number of two-dimensional points to generate to compute the integral. Default
value is 1e4

nStrata integer vector of length 2 with the number of strata in each dimension. Default
value is c(1, 1e2)

verbose logical (default FALSE) to report progress of the computation

Details

The prior distributions are specified as named lists where the first component of each list must be the
name of distribution (’unif’, ’triang’, ’degen’, ’gamma’) and the rest of components must be named
according to the name of the parameters of the random generator of the corresponding distribution
according to:

• unif: xMin, xMax for the minimum, maximum of the sampled interval.

• degen: x0 for the degenerate value of the random variable.

• triang: xMin, xMax, xMode for minimum, maximum and mode (see qtriang).

• gamma: scale and shape with the same meaning as in rgamma.

Value

postN0 computes the posterior mean, median, and mode of the posterior distribution for each cell.
The function returns a matrix with the estimates in columns and the cells in rows.

18 postNt

See Also

rN0

Examples

It takes a couple of minutes
postN0(nMNO = 20, nReg = 115, fu = list('unif', xMin = 0.3, xMax = 0.5),

fv = list('unif', xMin = 100, xMax = 120),
flambda = list('gamma', shape = 11, scale = 12))

postNt Posterior mean, median, and mode for the number of individuals at an
arbitrary time.

Description

Compute the posterior mean, median, and mode for the number of individuals generating posterior
distribution according to the hierarchical model.

Usage

postNt(nMNOmat, nReg, fu, fv, flambda, distNames, variation, scale = 1,
n = 1000, relTol = 1e-06, nSim = 1000, nStrata = c(1, 100),
verbose = FALSE)

Arguments

nMNOmat transition matrix with the number of individuals displaced from cell to cell de-
tected by the Mobile Network Operator

nReg non-negative integer vector with the number of individuals detected in each cell
according to the population register

fu, fv named lists with the prior marginal distributions of the two-dimensional points
for the Monte Carlo integration

flambda named list with the prior distribution of the lambda parameter

distNames character vector with the names of the prior distributions for each cell

variation list of lists whose components are parameters providing a measure of variation
of each prior distribution

scale numeric vector with the scale to count the number of individuals. Default value
is 1

n number of points to generate in the posterior distribution for the computation.
Default value is 1e3

relTol relative tolerance in the computation of the kummer function. Default value is
1e-6

nSim number of two-dimensional points to generate to compute the integral. Default
value is 1e4

nStrata integer vector of length 2 with the number of strata in each dimension. Default
value is c(1, 1e2)

verbose logical (default FALSE) to report progress of the computation

postNt 19

Details

The prior distributions are specified as named lists where the first component of each list must be the
name of distribution (’unif’, ’triang’, ’degen’, ’gamma’) and the rest of components must be named
according to the name of the parameters of the random generator of the corresponding distribution
according to:

• unif: xMin, xMax for the minimum, maximum of the sampled interval.

• degen: x0 for the degenerate value of the random variable.

• triang: xMin, xMax, xMode for minimum, maximum and mode (see qtriang).

• gamma: scale and shape with the same meaning as in rgamma.

Value

postNt computes the posterior mean, median, and mode of the posterior distribution for each cell
at an arbitrary time t. The function returns a matrix with the estimates in columns and the cells in
rows.

See Also

rNt, postN0, postNtcondN0

Examples

First, the inputs:

#The transition matrix of individuals detected by the MNO
nMNOmat <- rbind(c(10, 3, 4), c(5, 21, 3), c(3, 9, 18))

Population at the initial time of each cell according to the population register
nReg <- c(90, 130, 101)

List of priors for u
u0 <- rowSums(nMNOmat) / nReg
cv_u0 <- 0.15
fu <- lapply(u0, function(u){
umin <- max(0, u - cv_u0 * u)
umax <- min(1, u + cv_u0 * u)
output <- list('unif', xMin = umin, xMax = umax)
return(output)

})

List of priors for v
v0 <- nReg
cv_v0 <- 0.10
fv <- lapply(v0, function(u){

umin <- max(0, u - cv_v0 * u)
umax <- u + cv_v0 * u
output <- list('unif', xMin = umin, xMax = umax)
return(output)

})

List of priors for lambda
cv_lambda <- 0.6
alpha <- 1 / cv_lambda**2 - 1
flambda <- lapply(v0, function(v){list('gamma', shape = 1 + alpha, scale = v / alpha)})

20 postNtcondN0

Names and parameters of priors for the transition probabilities
distNames <- rep('unif', 3)
variation <- rep(list(list(cv = 0.20)), 3)

It takes a couple of minutes.
postNt(nMNOmat, nReg, fu, fv, flambda, distNames, variation)

postNtcondN0 Posterior mean, median, and mode for the number of individuals at an
arbitrary time conditioned upon the initial population.

Description

Compute the posterior mean, median, and mode for the number of individuals generating posterior
distribution according to the hierarchical model conditioned upon the initial population of each cell,
which must be provided

Usage

postNtcondN0(N0, nMNOmat, distNames, variation, n = 1000)

Arguments

N0 initial population in each cell

nMNOmat transition matrix with the number of individuals displaced from cell to cell de-
tected by the Mobile Network Operator

distNames character vector with the names of the prior distributions for each cell

variation list of lists whose components are parameters providing a measure of variation
of each prior distribution

n number of points to generate in the posterior distribution for the computation.
Default value is 1e3

Value

Return a matrix with three columns (mean, median, and mode estimates) and one row per cell

Examples

First, the inputs:

The initial population
N0 <- c(93, 123, 130)

#The transition matrix of individuals detected by the MNO
nMNOmat <- rbind(c(10, 3, 4), c(5, 21, 3), c(3, 9, 18))

Names and parameters of priors for the transition probabilities
distNames <- rep('unif', 3)
variation <- rep(list(list(cv = 0.20)), 3)

ratioBeta 21

It takes a couple of minutes.
postNtcondN0(N0, nMNOmat, distNames, variation)

ratioBeta The ratio of two beta functions.

Description

Compute the ratio of two beta functions whose arguments differ by integer numbers

Usage

ratioBeta(alpha, beta, m, n)

Arguments

alpha, beta non-negative numeric vectors

m, n non-negative integer vectors

Value

ratioBeta gives B(alpha+m,beta+n)
B(alpha,beta)

The lengths of the input vectors must be all equal except when their length is 1, which are recycled.
Otherwise NAs are produced.

See Also

beta, lbeta for related functions.

Examples

ratioBeta(10, 13, 2, 3)
ratioBeta(1:10, 10:1, 2, 3)
ratioBeta(1:3, 3:1, c(2, 3), 4)

rg Generation of random deviates of the candidate distribution.

Description

Generate random points according to the candidate probability distribution in the accept-reject
method of generation of random variables applied to the distribution of the lambda parameter

Usage

rg(n, nMNO, nReg, fu, fv, flambda, relTol = 1e-06, nSim = 10000,
nStrata = c(1, 100), verbose = FALSE)

22 rlambda

Arguments

n number of values to generate

nMNO, nReg non-negative integer vectors with the number of individuals detected in
each cell according to the network operator and the register

fu, fv named lists with the prior marginal distributions of the two-dimensional points
for the Monte Carlo integration

flambda named list with the prior distribution of the lambda parameter

relTol relative tolerance in the computation of the kummer function. Default value is
1e-6

nSim number of two-dimensional points to generate to compute the integral. Default
value is 1e4

nStrata integer vector of length 2 with the number of strata in each dimension. Default
value is c(1, 1e2)

verbose logical (default FALSE) to report progress of the computation

Details

The candidate distribution is a gamma distribution with parameters shape = nMNO + 1 and scale =
λ∗ / nMNO, where λ∗ stands for the mode of the posterior distribution of the lambda parameter.

It is important to know that currently this function accepts only parameters for a single cell at a
time. In case of interest for the candidate density function values for a set of cells, the user should
program his/her own routine to apply this function to every cell.

Value

rg generates n points according to the candidate distribution.

See Also

modeLambda, dlambda for related functions.

Examples

hist(rg(1e5, nMNO = 20, nReg = 115, fu = list('unif', xMin = 0.3, xMax = 0.5),
fv = list('unif', xMin = 100, xMax = 120),

flambda = list('gamma', shape = 11, scale = 12)), breaks = seq(1, 200, by = 2), main ='')

rlambda Generation of random deviates of the posterior distribution of param-
eter lambda.

Description

Generate random points according to the posterior probability distribution of the parameter lambda
in the hierarchical model.

rlambda 23

Usage

rlambda(n, nMNO, nReg, fu, fv, flambda, relTol = 1e-06, nSim = 10000,
nStrata = c(1, 100), verbose = FALSE)

Arguments

n number of values to generate
nMNO, nReg non-negative integer vectors with the number of individuals detected in

each cell according to the network operator and the register
fu, fv named lists with the prior marginal distributions of the two-dimensional points

for the Monte Carlo integration
flambda named list with the prior distribution of the lambda parameter
relTol relative tolerance in the computation of the kummer function. Default value is

1e-6

nSim number of two-dimensional points to generate to compute the integral. Default
value is 1e4

nStrata integer vector of length 2 with the number of strata in each dimension. Default
value is c(1, 1e2)

verbose logical (default FALSE) to report progress of the computation

Details

The points are generated according to the accept-reject method using as candidate distribution a
Cauchy distribution whose parameters are taken from the prior distributions and the mode of the
posterior distribution of the lambda parameter.

The prior distributions are specified as named lists where the first component of each list must be the
name of distribution (’unif’, ’triang’, ’degen’, ’gamma’) and the rest components must be named
according to the name of the parameters of the random generator of the corresponding distribution
according to:

• unif: xMin, xMax for the minimum, maximum of the sampled interval.
• degen: x0 for the degenerate value of the random variable.
• triang: xMin, xMax, xMode for minimum, maximum and mode (see qtriang).
• gamma: scale and shape with the same meaning as in rgamma.

Value

rlambda generates n points according to the posterior distribution of the parameter lambda. The
function returns a vector with these points.

See Also

dlambda, rg for related functions.

Examples

It takes a couple of minutes
hist(rN0(500, nMNO = 20, nReg = 115, fu = list('unif', xMin = 0.3, xMax = 0.5),

fv = list('unif', xMin = 100, xMax = 120),
flambda = list('gamma', shape = 11, scale = 12))$N0,
breaks = seq(1, 200, by = 1), main ='', xlab = 'number of individuals')

24 rmatProb

rmatProb Generate matrices of transition probabilities

Description

Generate a list of matrices of transition probabilities computed with the transition matrices of indi-
viduals among pairs of cells detected by the network and specified probability input distributions
per cell.

Usage

rmatProb(n, nMNOmat, distNames, variation)

Arguments

n number of matrices to generate

nMNOmat transition matrix with the number of individuals displaced from cell to cell de-
tected by the Mobile Network Operator

distNames character vector with the names of the prior distributions for each cell

variation list of lists whose components are parameters providing a measure of variation
of each prior distribution

Details

The function generates the probabilities according to a Dirichlet distribution with parameters gen-
erated by alphaPrior. These parameters are generated with distributions whose names are taken
from the input parameter distNames and construct the corresponding prior distribution for each
cell j with mode at u∗j = Nj , where Nj is taken from the sum of rows of nMNOmat. Next the rest
of parameters of the distribution are computed according to the dispersion parameters specified in
variation.

As accepted distribution names, currently the user can specify unif, degen, triang, and gamma.

The dispersion parameters recognised so far are the coefficients of variation only (standard deviation
divided by the mean of the distribution). These dispersion parameters must be specified by a named
component cv with a numeric value in [0, 1].

For each distribution the parameters are computed as follows:

• unif: This is the uniform distribution with parameters xMax and xMin. Both parameters are
computed by u∗j · (1±

√
3cv), respectively, in each cell j.

• degen: This is the degenerate distribution with parameter X0 taken as u∗j in each cell j.

• triang: This is the triangular distribution triang with parameters xMax, xMin, and xMode.
The latter is taken directly from nMNOfrom. The distribution is assumed to be symmetrical so
that the two former parameters are computed by u∗j · (1±

√
3cv), respectively, in each cell j.

• gamma: This is the gamma distribution with parameters shape and scale. The former is
computed as 1

cv2 and the latter as fracu∗j scale− 1.

Value

A list of n matrices with transition probabilities

rN0 25

Examples

nMNOmat <- rbind(c(10, 3, 4), c(5, 21, 3), c(3, 9, 18))
distNames <- rep('unif', 3)
variation <- rep(list(list(cv = 0.20)), 3)
rmatProb(10, nMNOmat, distNames, variation)

rN0 Generation of random deviates of the posterior distribution of initial
population counts.

Description

Generate random points according to the posterior probability distribution of the number of indi-
viduals in the hierarchical model.

Usage

rN0(n, nMNO, nReg, fu, fv, flambda, scale = 1, relTol = 1e-06,
nSim = 10000, nStrata = c(1, 100), verbose = FALSE)

Arguments

n number of values to generate

nMNO, nReg non-negative integer vectors with the number of individuals detected in
each cell according to the network operator and the register

fu, fv named lists with the prior marginal distributions of the two-dimensional points
for the Monte Carlo integration

flambda named list with the prior distribution of the lambda parameter

scale numeric vector with the scale to count the number of individuals. Default value
is 1

relTol relative tolerance in the computation of the kummer function. Default value is
1e-6

nSim number of two-dimensional points to generate to compute the integral. Default
value is 1e4

nStrata integer vector of length 2 with the number of strata in each dimension. Default
value is c(1, 1e2)

verbose logical (default FALSE) to report progress of the computation

Details

The posterior distribution is a Poisson distribution with parameter lambda * scale, where the
values of lambda are generated with the function rlambda.

The prior distributions are specified as named lists where the first component of each list must be the
name of distribution (’unif’, ’triang’, ’degen’, ’gamma’) and the rest components must be named
according to the name of the parameters of the random generator of the corresponding distribution
according to:

• unif: xMin, xMax for the minimum, maximum of the sampled interval.

26 rNt

• degen: x0 for the degenerate value of the random variable.

• triang: xMin, xMax, xMode for minimum, maximum and mode (see qtriang).

• gamma: scale and shape with the same meaning as in rgamma.

Value

rN0 generates n points according to the posterior distribution. The function returns a data.table with
these points (under the column N0) together with the additional variables:

• The common length of nMNO and nReg identifies the number of territorial cells in which the
number of individuals detected by the telecommunication network and official data. The col-
umn cellID identifies these territorial cells.

• The different values of the generated values of lambda are returned under the column lambda.

• The inputs nMNO and nReg are also included in the output data.table in columns under the same
name.

See Also

rlambda, rg, rNt for related functions.

Examples

It takes a couple of minutes
hist(rN0(500, nMNO = 20, nReg = 115, fu = list('unif', xMin = 0.3, xMax = 0.5),

fv = list('unif', xMin = 100, xMax = 120),
flambda = list('gamma', shape = 11, scale = 12))$N0,
breaks = seq(1, 200, by = 1), main ='', xlab = 'number of individuals')

rNt Generation of random deviates of the posterior distribution of popula-
tion counts.

Description

Generate random points according to the posterior probability distribution of the number of indi-
viduals in the hierarchical model at arbitrary time instants.

Usage

rNt(n, nMNOmat, nReg, fu, fv, flambda, distNames, variation, scale = 1,
relTol = 1e-06, nSim = 1000, nStrata = c(1, 100), verbose = FALSE)

Arguments

n number of values to generate

nMNOmat transition matrix with the number of individuals displaced from cell to cell de-
tected by the Mobile Network Operator

nReg non-negative integer vectors with the number of individuals detected in each cell
according to the network operator and the register

rNt 27

fu, fv named lists with the prior marginal distributions of the two-dimensional points
for the Monte Carlo integration

flambda named list with the prior distribution of the lambda parameter

distNames character vector with the names of the prior distributions for each cell

variation list of lists whose components are parameters providing a measure of variation
of each prior distribution

scale numeric vector with the scale to count the number of individuals. Default value
is 1

relTol relative tolerance in the computation of the kummer function. Default value is
1e-6

nSim number of two-dimensional points to generate to compute the integral. Default
value is 1e4

nStrata integer vector of length 2 with the number of strata in each dimension. Default
value is c(1, 1e2)

verbose logical (default FALSE) to report progress of the computation

Details

The posterior distribution is a Poisson distribution with parameter lambda * scale, where the
values of lambda are generated with the function rlambda.

The prior distributions are specified as named lists where the first component of each list must be the
name of distribution (’unif’, ’triang’, ’degen’, ’gamma’) and the rest of components must be named
according to the name of the parameters of the random generator of the corresponding distribution
according to:

• unif: xMin, xMax for the minimum, maximum of the sampled interval.

• degen: x0 for the degenerate value of the random variable.

• triang: xMin, xMax, xMode for minimum, maximum and mode (see qtriang).

• gamma: scale and shape with the same meaning as in rgamma.

Value

rNt generates n points according to the posterior distribution. The function returns a data.table with
these points (under the column N0) together with the additional variables:

• The common length of nMNO and nReg identifies the number of territorial cells in which the
number of individuals detected by the telecommunication network and official data. The col-
umn cellID identifies these territorial cells.

• The different values of the generated values of lambda are returned under the column lambda.

• The inputs nMNO and nReg are also included in the output data.table in columns under the same
name.

See Also

rlambda, rg, rNt for related functions.

28 rNtcondN0

Examples

First, the inputs:
The number of generated values
n <- 1e3

#The transition matrix of individuals detected by the MNO
nMNOmat <- rbind(c(10, 3, 4), c(5, 21, 3), c(3, 9, 18))

Population at the initial time of each cell according to the population register
nReg <- c(90, 130, 101)

List of priors for u
u0 <- rowSums(nMNOmat) / nReg
cv_u0 <- 0.15
fu <- lapply(u0, function(u){
umin <- max(0, u - cv_u0 * u)
umax <- min(1, u + cv_u0 * u)
output <- list('unif', xMin = umin, xMax = umax)
return(output)

})

List of priors for v
v0 <- nReg
cv_v0 <- 0.10
fv <- lapply(v0, function(u){

umin <- max(0, u - cv_v0 * u)
umax <- u + cv_v0 * u
output <- list('unif', xMin = umin, xMax = umax)
return(output)

})

List of priors for lambda
cv_lambda <- 0.6
alpha <- 1 / cv_lambda**2 - 1
flambda <- lapply(v0, function(v){list('gamma', shape = 1 + alpha, scale = v / alpha)})

Names and parameters of priors for the transition probabilities
distNames <- rep('unif', 3)
variation <- rep(list(list(cv = 0.20)), 3)

The output
Nt <- rNt(n, nMNOmat, nReg, fu, fv, flambda, distNames, variation)$N
hist(Nt, breaks = seq(1, max(Nt) + 10, by = 1), main ='', xlab = 'number of individuals')

rNtcondN0 Conditioned generation of random deviates of the posterior distribu-
tion of population counts.

Description

Generate random deviates of the posterior distribution of the number of individuals at an arbitrary
time instant conditioned upon the initial population.

rNtcondN0 29

Usage

rNtcondN0(n, N0, nMNOmat, distNames, variation)

Arguments

n number of values to generate

N0 initial population in each cell

nMNOmat transition matrix with the number of individuals displaced from cell to cell de-
tected by the Mobile Network Operator

distNames character vector with the names of the prior distributions for each cell

variation list of lists whose components are parameters providing a measure of variation
of each prior distribution

Details

The function generates the probabilities according to a Dirichlet distribution with parameters gen-
erated by alphaPrior. These parameters are generated with distributions whose names are taken
from the input parameter distNames and construct the corresponding prior distribution for each
cell j with mode at u∗j = Nj , where Nj is taken from the sum of rows of nMNOmat. Next the rest
of parameters of the distribution are computed according to the dispersion parameters specified in
variation.

As accepted distribution names, currently the user can specify unif, degen, triang, and gamma.

The dispersion parameters recognised so far are the coefficients of variation only (standard deviation
divided by the mean of the distribution). These dispersion parameters must be specified by a named
component cv with a numeric value in [0, 1].

For each distribution the parameters are computed as follows:

• unif: This is the uniform distribution with parameters xMax and xMin. Both parameters are
computed by u∗j · (1±

√
3cv), respectively, in each cell j.

• degen: This is the degenerate distribution with parameter X0 taken as u∗j in each cell j.

• triang: This is the triangular distribution triang with parameters xMax, xMin, and xMode.
The latter is taken directly from nMNOfrom. The distribution is assumed to be symmetrical so
that the two former parameters are computed by u∗j · (1±

√
3cv), respectively, in each cell j.

• gamma: This is the gamma distribution with parameters shape and scale. The former is
computed as 1

cv2 and the latter as fracu∗j scale− 1.

Value

Return a matrix with as many columns as cells and n rows with the generated values

Examples

N0 <- c(93, 123, 130)
nMNOmat <- rbind(c(10, 3, 4), c(5, 21, 3), c(3, 9, 18))
distNames <- rep('unif', 3)
variation <- rep(list(list(cv = 0.20)), 3)
rNtcondN0(1e3, N0, nMNOmat, distNames, variation)

30 rp

rp Generate random vector deviates of transition probabilities.

Description

Generate random vector deviates of the transition probabilities pij(t0, tn) for a given cell i stacked
into an n×(number of cells) matrix

Usage

rp(n, flist)

Arguments

n number of probability vectors to generate

flist list with the prior distributions for each cell

Details

The prior distributions are specified as named lists where the first component of each list must be the
name of distribution (’unif’, ’triang’, ’degen’, ’gamma’) and the rest components must be named
according to the name of the parameters of the random generator of the corresponding distribution
according to:

• unif: xMin, xMax for the minimum, maximum of the sampled interval.

• degen: x0 for the degenerate value of the random variable.

• triang: xMin, xMax, xMode for minimum, maximum and mode (see qtriang).

• gamma: scale and shape with the same meaning as in rgamma.

Value

Return a matrix with n rows and as many columns as cells taken from the length of flist. Each
row is thus a probability vector

Examples

flist <- alphaPrior(c(10, 3, 4), c('unif', 'triang', 'gamma'),
list(list(cv = 0.1), list(cv = 0.05), list(cv = 0.15)))

rp(10, flist)

Index

∗Topic datasets
flambda, 8
fu, 8
fv, 9
MobPop, 12
nMNO_ini, 14
nReg, 14

alphaPrior, 2, 16, 24, 29

beta, 21

data.table, 5, 6, 8–12, 26, 27
dg, 4
Distributions, 7
dlambda, 4, 5, 13, 16, 22, 23
dpois, 5
dtriang, 3, 7, 16

flambda, 8
fu, 8
fv, 9

genAlpha, 9, 16
genUV, 6, 8, 9, 10, 16

kummer, 4, 5, 11, 12, 15–18, 22, 23, 25, 27

lbeta, 21

MobPop, 12
modeLambda, 4, 12, 15, 22

nMNO_ini, 14
nReg, 14

pestim, 14
pestim-package (pestim), 14
Phi, 6, 15, 16
postN0, 16, 17, 19
postNt, 16, 18
postNtcondN0, 16, 19, 20
ptriang, 16

qtriang, 6, 9–11, 13, 16, 17, 19, 23, 26, 27, 30

ratioBeta, 15, 16, 21
rg, 16, 21, 23, 26, 27
rgamma, 6, 9–11, 13, 17, 19, 23, 26, 27, 30
rlambda, 16, 22, 25–27
rmatProb, 16, 24
rN0, 16, 18, 25
rNt, 16, 19, 26, 26, 27
rNtcondN0, 16, 28
rp, 16, 30
rtriang, 16
runif, 11

triang, 24, 29

31

Bibliography

American Planning Association (2018). Land based classification standards. https:
//www.planning.org/lbcs/.

Banerjee, S., B. P. Carlin, and A. E. Gelfand (2015). Hierarchical modelling and analysis of
spatial data (2nd ed). CRC Press.

Basu, D. (1971). An essay on the logical foundations of survey sampling, Part 1 (with
discussion), in V.P. Godambe and D.A. Sprott (eds.), Foundations of Statistical Inference,
pp. 203–242. Holt, Reinhart and Winston.

Bethlehem, J. (2009). Applied Survey Methods: A Statistical Perspective. Wiley.

Brown, J. and R. Churchill (2004). Complex variables and applications (8th ed.). McGraw-
Hill.

Calabrese, F., L. Ferrari, and V. D. Blondel (2014). Urban sensing using mobile phone
network data: A survey of research. ACM Computing Surveys 47, 25:1-25:20.

Casella, G. and R. Berger (2002). Statistical Inference. Duxbury Press.

Cassel, C.-M., C.-E. Särndal, and J. Wretman (1977). Foundations of Inference in Survey
Sampling. Wiley.

Cochran, W. (1977). Sampling Techniques (3rd ed.). Wiley.

Deming, W. (1950). Some theory of sampling. Wiley.

Deville, P., C. Linard, S. Martin, M. Gilbert, F. Stevens, A. Gaughan, V. Blondel, and
A. Tatem (2014). Dynamic population mapping using mobile phone data. Proceedings
of the National Academy of Sciences (USA) 111, 15888– 15893.

Devroye, L. (1986). Non-uniform random variable generation. Springer.

93

https://www.planning.org/lbcs/
https://www.planning.org/lbcs/

Bibliography

Doyle, J., P. Hung, R. Farrell, and S. Mcloone (2014). Population mobility dynamics
estimated from mobile telephony data. Journal of Urban Technology 21, 109–132.

EPSG (2018). epsg.io – Coordinate Systems Worldwide. https://epsg.io/28992.

ESS (2011). European Statistics Code of Practice. http://ec.europa.
eu/eurostat/documents/3859598/5921861/KS-32-11-955-EN.PDF/
5fa1ebc6-90bb-43fa-888f-dde032471e15.

Eurostat (2014). Methodological manual for tourism statistics (v3.1).
http://ec.europa.eu/eurostat/documents/3859598/6454997/
KS-GQ-14-013-EN-N.pdf.

Eurostat, NIT, University of Tartu, Statistics Estonia, Positium, IFSTTAT, and Statistics
Finland (2014). Feasibility study on the use of mobile poistioning data for tourism
statistics. http://ec.europa.eu/eurostat/web/tourism/methodology/
projects-and-studies.

Gelman, A., B. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin (2013). Bayesian
data analysis. CRC Press.

Graham, R., D. Knuth, and O. Patashnik (1996). Concrete Mathematics (2nd ed.). Addison-
Wesley.

Grimmet, G. and D. Stirzaker (2004). Probability and random processes (3rd ed.). Oxford
Science Publications.

Groves, R. (1989). Survey errors and survey costs. Wiley.

Hájek, J. (1981). Sampling from a finite population. Marcel Dekker Inc.

Hansen, M. (1987). Some history and reminiscences on survey sampling. Statistical
Science 2, 180–190.

Hansen, M., W. Hurwitz, and W. Madow (1966). Sample survey: methods and theory (7th
ed.). Wiley.

Heckman, J. (1979). Sample selection bias as a specification error. Econometrica 47,
153–161.

Hedayat, A. and B. Sinha (1991). Design and Inference in Finite Population Sampling. Wiley.

ISO (2004). ISO 8601:2004. https://www.iso.org/standard/40874.html.

ISO (2007). ISO 19111:2007. https://www.iso.org/standard/41126.html.

94

https://epsg.io/28992
http://ec.europa.eu/eurostat/documents/3859598/5921861/KS-32-11-955-EN.PDF/5fa1ebc6-90bb-43fa-888f-dde032471e15
http://ec.europa.eu/eurostat/documents/3859598/5921861/KS-32-11-955-EN.PDF/5fa1ebc6-90bb-43fa-888f-dde032471e15
http://ec.europa.eu/eurostat/documents/3859598/5921861/KS-32-11-955-EN.PDF/5fa1ebc6-90bb-43fa-888f-dde032471e15
http://ec.europa.eu/eurostat/documents/3859598/6454997/KS-GQ-14-013-EN-N.pdf
http://ec.europa.eu/eurostat/documents/3859598/6454997/KS-GQ-14-013-EN-N.pdf
http://ec.europa.eu/eurostat/web/tourism/methodology/projects-and-studies
http://ec.europa.eu/eurostat/web/tourism/methodology/projects-and-studies
https://www.iso.org/standard/40874.html
https://www.iso.org/standard/41126.html

Bibliography

Kruskal, W. and F. Mosteller (1979a). Representative sampling, i: Non-scientific literature.
International Statistical Review 47, 13–24.

Kruskal, W. and F. Mosteller (1979b). Representative sampling, ii: scientific literature,
excluding statistics. International Statistical Review 47, 111–127.

Kruskal, W. and F. Mosteller (1979c). Representative sampling, iii: the current statistical
literature. International Statistical Review 47, 245–265.

Kruskal, W. and F. Mosteller (1980). Representative sampling, iv: The history of the
concept in statistics. International Statistical Review 48, 169–195.

Lehtonen, R. and A. Veijanen (1998). Logistic generalized regression estimators. Survey
Methodology 24, 51–55.

Lessler, J. and W. Kalsbeek (1992). Nonsampling error in surveys. Wiley.

Little, R. (2012). Calibrated bayes, an alternative inferential paradigm for official statistics.
Journal of Official Statistics 28, 309–334.

Manly, B. and J. e. Navarro-Alberto (2014). Introduction to ecological sampling. CRC Press.

Meersman, F. D., G. Seynaeve, M. Debusschere, P. Lusyne, P. Dewitte, Y. Baeyens,
A. Wirthmann, C. Demunter, F. Reis, and H. Reuter (2016). Assessing the quality of
mobile phone data as a source of statistics. Q2016 Conference paper, June 2016.

Nemhauser, G. and L. Wolsey (1999). Integer and combinatorial optimization. Addison-
Wesley.

NetMob (2017). Conference on the scientific analysis of mobile phone datasets. http:
//netmob.org/.

Neyman, J. (1934). On the two different aspects of the representative method: the
method of stratified sampling and the method of purposive selection. Journal of the
Royal Statistical Society 97, 558–625.

Okabe, A., B. Boots, K. Sugihara, and S.-N. Chiu (2000). Spatial tessellations: concepts and
applications of Voronoi diagrams (2nd ed). Wiley.

Positium (2016). Technical documentation for required raw data from mobile network
operators for official statistics. Technical report, Positium.

Positium (2017). Common plan for methodology and data processing of mobile phone
data from mobile network operators for official statistics. Technical report, Positium.

Positium (2018). https://www.positium.com/.

95

http://netmob.org/
http://netmob.org/
https://www.positium.com/

Bibliography

Rao, J. and I. Molina (2015). Small area estimation (2nd ed). Wiley.

Robert, C. and G. Casella (2004). Monte Carlo Statistical Methods (2nd ed). Springer.

Robert, C. and G. Casella (2010). Introducing Monte Carlo Methods with R. Springer.

Royle, J. and R. Dorazio (2014). Hierarchical modeling and inference in Ecology: The Analysis
of Data from Populations, Metapopulations and Communities. Academic Press.

Salgado, D., B. Oancea, and L. Sanguiao (2018). pestim - An R package for
population estimation using mobile phone data. https://www.github.com/
MobilePhoneESSnetBigData/pestim.

Särndal, C.-E. (2007). The calibration approach in survey theory and practice. Survey
Methodology 33, 99–119.

Särndal, C.-E., B. Swensson, and J. Wretman (1992). Model assisted survey sampling.
Springer.

Seynaeve, G., C. Demunter, F. D. Meersman, Y. Baeyens, M. Debusschere, P. Dewitte,
P. Lusyne, F. Reis, H. Reuter, and A. Wirthmann (2016). When mobile network
operators and statistical offices meet - integrating mobile positioning data into the
production process of tourism statistics. 14th Global Forum on Tourism Statistics (Venice,
Italy, Nov. 2016).

Smith, T.M.F. (1976). The foundations of survey sampling: a review. Journal of the Royal
Statistical Society A 139, 183–204.

Särndal, C.-E. and S. Lundström (2005). Estimation in Surveys with Nonresponse. Wiley.

Open Street Map Foundation. https://www.openstreetmap.org.

ESS (2017). ESSnet on Big Data. https://webgate.ec.europa.eu/fpfis/
mwikis/essnetbigdata/index.php.

JAGS (2018). http://mcmc-jags.sourceforge.net/.

Pearson, J.W., S. Olver, A.M. Porter (2017). Numerical methods for the computation
of the confluent and Gauss hypergeometric functions. Numerical Algorithms 74(3),
821–866.

Stan (2018). Stan. http://mc-stan.org/.

Tennekes, M. (2018). Geographic Location of Mobile Phone Events. Vignette, Geographic
Location Events.

96

https://www.github.com/MobilePhoneESSnetBigData/pestim
https://www.github.com/MobilePhoneESSnetBigData/pestim
https://www.openstreetmap.org
https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/index.php
https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/index.php
http://mcmc-jags.sourceforge.net/
http://mc-stan.org/

Bibliography

Thompson, S. (2012). Sampling. Wiley.

UNECE (2013). Generic Statistical Business Process Model v5.0. https:
//statswiki.unece.org/display/GSBPM/Generic+Statistical+
Business+Process+Model.

UNECE (2016). Generic Statistical Data Editing Models. https://statswiki.unece.
org/display/VSH/GSDEMs.

Valliant, R., A. Dorfmann, and R. Royall (2000). Finite population sampling and inference. A
prediction approach. Wiley.

Vanhoof, M., F. Reis, T. Ploetz, and Z. Smoreda (2018). Assessing the quality of home
detection from mobile phone data for Official Statistics. Journal of Official Statistics. In
press.

Watson, G.N. (1918). The Harmonic Functions Associated with the Parabolic Cylinder.
Proceedings of the London Mathematical Society, 2, 116—148.

Wilysis (2018). Network Cell Info Lite app. https://play.google.com/store/
apps/details?id=com.wilysis.cellinfolite&hl=en_419.

WP5 of ESSnet on Big Data (2016). Deliverable 5.1. https://webgate.ec.europa.
eu/fpfis/mwikis/essnetbigdata/images/6/65/WP5_Deliverable_1.1.
pdf.

WP5 of ESSnet on Big Data (2017). Deliverable 5.2. https://webgate.ec.europa.
eu/fpfis/mwikis/essnetbigdata/images/6/65/WP5.Deliverable1.2.
pdf.

WP5 of ESSnet on Big Data (2018). Deliverable 5.3. https://webgate.ec.europa.
eu/fpfis/mwikis/essnetbigdata/images/6/65/WP5.Deliverable1.3.
pdf.

Yates, F. (1965). Sampling methods for censuses and surveys (3rd ed.). Charles Griffins.

Zhang, L.-C. (2012). Topics of statistical theory for register-based statistics and data
integration. Statistica Neerlandica 66(1), 41–63.

97

https://statswiki.unece.org/display/GSBPM/Generic+Statistical+Business+Process+Model
https://statswiki.unece.org/display/GSBPM/Generic+Statistical+Business+Process+Model
https://statswiki.unece.org/display/GSBPM/Generic+Statistical+Business+Process+Model
https://statswiki.unece.org/display/VSH/GSDEMs
https://statswiki.unece.org/display/VSH/GSDEMs
https://play.google.com/store/apps/details?id=com.wilysis.cellinfolite&hl=en_419
https://play.google.com/store/apps/details?id=com.wilysis.cellinfolite&hl=en_419
https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/images/6/65/WP5_Deliverable_1.1.pdf
https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/images/6/65/WP5_Deliverable_1.1.pdf
https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/images/6/65/WP5_Deliverable_1.1.pdf
https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/images/6/65/WP5.Deliverable1.2.pdf
https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/images/6/65/WP5.Deliverable1.2.pdf
https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/images/6/65/WP5.Deliverable1.2.pdf
https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/images/6/65/WP5.Deliverable1.3.pdf
https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/images/6/65/WP5.Deliverable1.3.pdf
https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/images/6/65/WP5.Deliverable1.3.pdf

	Introduction
	Some IT infrastructures for analysing mobile phone data
	At NSIs premisesPrepared in collaboration with Francesco Altarocca and Raffaello Martinelli.
	At MNOs premises
	Context: Working at Orange Labs premises
	Orange Labs access to Orange data
	Description of the infrastructure
	Feedback and experience from the user point of view

	mobloc - an R package for mobile location algorithms and tools
	Introduction
	Setup location model parameters
	Loading artificial cellplan data
	Creating cell polygons
	Calculating relative signal strength probabilites

	pestim - an R package to estimate population counts
	Introduction
	Estimating the population at the initial time period
	Examples
	Prior distribution of the hyperparameters
	Estimation for a single cell
	Estimation for several cells

	Estimates along a sequence of time periods
	Examples
	Further developments

	Implementation details and examples of combinations of priors for pestim
	The mathematical model used to estimate the target population at initial time
	The mathematical model used to estimate the target population for a sequence of time instants
	Technical comments on the functions
	fuUnif(um, uM), fvUnif(Nm, NM)
	fuUnif(um, uM), fvtriang(Nm, NM, NReg)
	fuUnif(um, uM), fvGamma(+ 1, NReg)
	fuTriang(um, uM, u*), fvUnif(Nm, NM)
	fuTriang(um, uM, u*), fvTriang(Nm, NM, NReg)
	fuTriang(um, uM, u*), fvGamma(a + 1, NRega)

	Documentation manual of package pestim
	Bibliography

