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Abstract

We study a dynamic network formation game in which agents play local actions, which
are adding, removing or replacing a link. We prove that finding a best local response can
be done in polynomial time, while the problem of finding a best global response is NP-
hard. We show that for general classes of payoff functions, which are based on axiomatic
properties, local-Nash and global-Nash networks exist. Also, we show that the dynamic
process of iterated local actions always terminates at a global-Nash network.
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1 Introduction

In this paper we study the formation of endogenous networks. Social and economic networks
are typically endogenous, since they are shaped by autonomous agents (e.g. persons or or-
ganizations) who correspond to the nodes. Via pairwise links, these agents are able to share
valuable information.

In this paper we propose a dynamic model of network formation where agents form links
unilaterally. Our model is based on Bala and Goyal (2000a). For a brief introduction and
overview of literature on other models of network formation we refer to Jackson (2005) and to
Van den Nouweland (2005).

Bala and Goyal (2000a) model network formation as a non-cooperative game. Here, an
agent’s action is defined as a set of links. The links of all agents together define a directed
network. The links that are formed by agent i are depicted by arcs pointing at i. A payoff
function assigns a payoff for each agent on base of the formed network.

The payoff functions that Bala and Goyal (2000a) study are the following. Each agent pays
a certain cost for each own link, i.e. for each link pointing at him. Further, each agent receives
certain profits from being connected to each other agent. Here, two cases are considered. In
the first case, agent i is connected to agent j if a directed path exists from j to i, and in the
second case if an undirected path exists between them. These two cases are called the one-way
flow and the two-way flow model respectively. These models have been extended by allowing
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heterogeneity among link costs and profits by Galeotti (2006) for the one-way flow case and
by Galeotti et al. (2006) for the two-way flow case. Further, both models have been extended
by introducing decay (Bala and Goyal (2000a), Galeotti (2006), and Galeotti et al. (2006)),
i.e. the the amount of profits depend on the length of the connection path counted in number
of links. Another extension that has been studied in literature is that links are not perfectly
reliable (Bala and Goyal (2000b), Haller and Sarangi (2005), and Haller et al. (2007)).

Observe that all these models (one-way and two-way flow, with and without decay, with
perfectly and imperfectly reliable links) only differ from each other in payoff function. In this
paper we prove the existence of Nash networks for general classes of payoff functions. For this
purpose, we propose a framework of axiomatic payoff properties that is inspired by the one-way
flow model without decay. These properties are intuitive and they are sufficient to guarantee
the existence of Nash networks.

Our payoff properties, and our proofs are oriented on local actions, which consist of the
following types: an addition of a link, a deletion of a link, a replacement of a link, and a pass.
Local actions are easier to analyze than global actions (defined as changing the whole set of
own links at once). From a computational point of view, we show that that the problem of
finding a best global response is NP-hard, while finding a best local response can be done in
polynomial time. We use this local approach in order to obtain global results, which are the
existence of global-Nash network, and the termination of an iterative procedure of local actions
at a global-Nash network.

We define a local-Nash network as a network in which no agent can improve by a unilateral
local action. We prove the existence of local-Nash networks for a framework of payoff properties.
Moreover, the networks that we find have a specific architecture that is characterized by the
property that each agent has at most one outgoing link. We show that local-Nash networks with
this architectural property are also global-Nash when the payoff function satisfies an additional
property. We show independence of our properties, and moreover, we show that this framework
of properties yields a generalization with respect to the payoff function in one-way flow model
with owner-homogeneous link costs and heterogeneous profits.

Further, we study an iterative procedure of good local responses. This procedure starts
with an arbitrary initial network. At each stage, an agent is selected at random, where each
agent has a fixed, stage-independent probability to be selected. This agent plays a good local
response. The procedure terminates at a specific network when this network is reached, and
moreover, when no agent wants to play a good local response other than pass. We prove that
our procedure terminates at a local-Nash network which is also global-Nash, whenever the
corresponding payoff function satisfies all our properties.

The described dynamic procedure resembles the one described by Bala and Goyal (2000a).
However, they examine only global actions, and multiple agents may play simultaneously during
each stage of their model. Watts (2001) and Jackson and Watts (2002) also study dynamic
models of network formation, but their models are based on the bilateral model of network
formation introduced by Jackson and Wolinsky (1996).

The outline of this paper is as follows. In section 2 we present the model and the notations
that we use throughout. In section 3 we study the complexity of determining best global and
best local responses. Here, we show that the problem of finding a best global response is NP-
hard, while the problem of finding a best local response can be solved in polynomial time. In
section 4 we prove the existence of local-Nash and global-Nash networks for games where the
payoff function satisfies a specific set of axiomatic properties. Then, we prove independence
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of these properties and relate them to payoff functions of the one-way flow model. In section
5, we study the play of our dynamic game. We provide an iterative procedure of good local
responses, and show that it terminates at a global-Nash network whenever the payoff function
satisfies our payoff properties. Finally, in section 6 we provide concluding remarks.

2 Model and notations

In this section we provide our model of network formation and we introduce the notations that
we will use throughout this paper.

2.1 Network

Let N denote a finite fixed set of agents. We define a network g on the agent set N as a set
of links g ⊆ N ×N , where loops are not allowed, i.e. (i, i) 6∈ g for all i ∈ N . Let G be the set
of all possible networks on N . A directed path from i to j in g is a sequence of distinct agents
i1, i2, . . . , ik with, k ≥ 1, such that i = i1, j = ik and (is, is+1) ∈ g for each s = 1, 2, . . . , k − 1.
Notice that for k = 1 we have that i = i1 is a trivial directed path without links from i to himself.
An undirected path is defined analogously where either (is, is+1) or (is+1, is) is contained in g
for each s = 1, 2, . . . , k− 1. Further, a directed cycle and an undirected cycle are defined in the
same way with the exception that i1 = ik.

For convenience we will use use the symbols ‘+’ and ‘−’ for the union, respectively the
set exclusion of two networks, or for a network and a single link. In case of ambiguity, these
operations are applied from left to right. For instance, the notation g − g′ + (j, i) equals
(g \ g′) ∪ {(j, i)}.

Let Car(g), the carrier of g, denote the set of so-called active agents in the network g, being
those agents who are begin- or endpoints of a link in g. For a network g we define gj , the
component of g that contains agent j, as the network containing all links that are connected to
j by some undirected path.

We say that a link (j, i), which is directed to i, is owned by i. Let Ni(g) = {j ∈ N :
a directed path from j to i exists in g} be the set of agents who are observed by i in g, and let
Nd

i (g) = {j : (j, i) ∈ g} be the set of neighbors of i in g. Note that i ∈ Ni(g) and i 6∈ Nd
i (g).

Let g−i denote the network obtained from g after removing the links owned by i. Notice
that an outgoing link of i, e.g. (i, j), may still exist in g−i. Further, we define g−ij = gj

−i +(j, i),
where gj

−i means (g−i)j , i.e. the component of g−i with j being active. We will come back to
this definition and the related definition beneficiality in section 4.

For each agent i, let πi : G → R be a payoff function. In section 4 we introduce axiomatic
properties for payoff functions in general. These properties are inspired by the payoff functions
of the one-way flow model studied by Bala and Goyal (2000a) and Galeotti (2006). They
consider the following class of payoff functions:

πi(g) =
∑

j∈Ni(g)

vij −
∑

j∈Nd
i (g)

cij (1)

for constants (vij)i,j∈N and (cij)i,j∈N,i6=j . Here, vij is intepreted as the profit that agent i
receives from being connected to j and cij is interpreted as the cost of link (j, i) for agent i.
All profits and costs are non-negative. We say that link costs are homogeneous if there is a
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constant c with cij = c for all i, j ∈ N , i 6= j. We say that link costs are owner-homogeneous if
for each agent i there is a constant ci with cij = ci for all j ∈ N \ {i}. Otherwise, link costs
are heterogeneous. These definitions also apply to the profits. We will refer to payoff functions
defined by (1) as B&G functions.

2.2 Network formation game

Given a set of agents N and a payoff function πi for each agent i, a network formation game
proceeds in stages 1, 2, 3, . . .. Let gt be the network at the beginning of stage t, which is known
to all agents. The initial network g1 can be any network in G. Then, at stage t according to a
probability device, an agent, say i, is selected. We assume that at each stage all agents have
positive (stage independent) probabilities of being selected. Now, stage t proceeds by allowing
one agent to modify the network gt by adjusting his set of links. Thus, a new network gt+1

results, which marks the start of stage t+ 1. The game ends with network g∗ if no agent wants
to adjust his links. In that case, each agent i receives payoff πi(g∗).

As for the stage adjustments we distinguish two cases: one of local adjustments and one
of global adjustments. In the first case the actions of agent i are restricted to (1) passing, (2)
adding a new link pointing at i, (3) deleting a link pointing at i, or (4) a replacement, which
is a combination of the previous two. These four types of actions are called local actions. In
the second case agent i is allowed to completely change the set of links pointing at him. These
actions are called global actions.

Formally, we define an action of agent i as a set of agents S ⊆ N \ {i}. For a global action,
there are no restrictions on S. For a local action we require |Nd

i (g)\S| ≤ 1 and |S \Nd
i (g)| ≤ 1.

The network, after i chooses to link with the agents in S, is described by

g−i + {(j, i) : j ∈ S}.

A local action S of agent i is called a good local response if

πi

(
g−i + {(j, i) : j ∈ S}

)
≥ πi(g).

A local action S of agent i is called a best local response if

πi

(
g−i + {(j, i) : j ∈ S}

)
≥ πi

(
g−i + {(j, i) : j ∈ T}

)
,

for all local actions T . A network g is called a local-Nash network if Nd
i (g) is a best local

response for all i ∈ N . A network g is called a strict local-Nash network if Nd
i (g) is the unique

best local response for all i ∈ N . Analogous definitions apply for the global case.
The following example with three agents illustrates how the dynamic formation game is

played.

Example 1 Let the set of agents be N = {1, 2, 3} and for each agent i ∈ N , let πi be a B&G
function as described in (1), where vij = 2 and cij = 1 for all agents j.

Let the initial network in this example, g1, be the empty network and let the agents play
local actions. The play of the game is shown in Table 1. In the second last column the selected
agent is given, but the agents do not know the order in which they are chosen in advance.
The corresponding networks are depicted in Figure 1. Notice that all played local actions in
this example are best local responses. Furthermore, the final network, g5, is strict local- and
global-Nash.
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Table 1: Play of the game.
Stage t Network gt π1(gt) π2(gt) π3(gt) Selected

agent
Local action

1 g1 = ∅ 0 0 0 1 add (3, 1)
2 g2 = {(3, 1)} 1 0 0 3 add (1, 3)
3 g3 = {(3, 1), (1, 3)} 1 0 1 2 add (3, 2)
4 g4 = {(3, 1), (1, 3), (3, 2)} 1 3 1 1 replace (3, 1)

with (2, 1)
5 g5 = {(2, 1), (1, 3), (3, 2)} 3 3 3 All agents pass.

1

2 3
Network g1

1

2 3
Network g2

1

2 3
Network g3

1

2 3
Network g4

1

2 3
Network g5

Figure 1: The networks obtained in Example 1

3 Best response

We motivate our local approach by the fact that local actions are easier to deal with than global
actions. In this section, we show that finding a best local response is polynomial bounded in n
(the number of agent), while the problem of finding a best global response is NP-hard, even for
a relatively small class of payoff functions: B&G functions with homogeneous link costs. Baron
et al. (2008) also study the computational complexity of finding best responses in unilateral
network formation games, but they consider a different class of payoff functions.

First observe that there are 2n−1 possible global actions that an agent can perform. In
the following theorem we show that the number of local actions that an agent can perform, is
bounded by the square of n.

Theorem 2 The number of possible local actions that an agent can perform, is bounded by n2,
where n is the number of agents.

Proof. The number of possible local actions that agent i can perform, depends on the number
of neighbors of i in g. If we denote this number by m ≤ n− 1, then agent i can do n−m− 1
additions, m deletions, and (n −m − 1)m replacements. Hence, the number of possible local
actions for agent i equals

n−m− 1 +m+ (n−m− 1)m = (n− 1) + (n−m− 1)m
≤ (n− 1) + (n−m− 1)(n− 1)
= (n− 1)(n−m)
≤ n2.

�
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Thus, finding a best local response can be done within polynomial time.
The complexity of finding a best global response is dependent on the payoff function. Here,

we restrict to a relatively small class of payoff functions, namely B&G functions with homo-
geneous link costs. For this class, we show that the Best Global Response Problem (BGRP in
short) is NP-hard.

Theorem 3 Let π be a B&G function. Then BGRP is NP-hard, even when link costs are
homogeneous.

Proof. We prove this by reduction from the Minimum Set Cover problem (MSC), which is a
well-known NP-hard problem (see Karp (1972)). Let K = {K1,K2, . . . ,Kk} be a collection
of k subsets of a finite set X = {1, 2, . . . , x} such that X ⊆

⋃k
j=1Kj . MSC is the problem of

finding a subset K′ ⊆ K of minimum cardinality such that every element in X belongs to at
least one member of K′. Notice that such a set cover K′ exists.

1 2 3 4 5

K
1

K
2

K
3

K
4

w

Figure 2: Network g

Next we show how to reduce MSC to BGRP. Let the agent set be initiated as N =
{1, . . . , x,K1,K2, . . . ,Kk, w, y}. Let g ∈ G be the network on N , built up as follows: for
each agent i ∈ X we create a link (i, w) and for each agent i ∈ Kj we create a link (i,Kj). In
Figure 2 an example of such a network is shown. Let the profits of agent y have the following
values:

vyi =

 1 if i ∈ X;
1− 1

2k if i ∈ K;
0 if i ∈ {w, y}.

Let the link costs be homogeneous; let c = 1.
We show that the problem of finding a best global response S for agent y with respect to g

is equivalent to the problem of finding a minimum subset of K that covers X.
Observe that we may restrict to S ⊆ {K1, . . . ,Kk, w}, because every i ∈ X is an element of

some Kj , and therefore agent y would receive at least as much payoff from replacing i by Kj .
Further, if w ∈ S, then S = {w}, since the cost of any additional link exceeds the extra profits.
Hence, either S = {w} or S ⊆ K. Observe that the action {w} yields the payoff x− 1 for agent
y.

Let K′ ⊆ K and let T be an action defined as T = K′. Then T yields the following payoff
for agent y:

πy(g−y + {(i, y) : i ∈ T}) = k′(1− 1
2k

) + t− k′ = − k
′

2k
+ t
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where k′ = |K′| and t is the number of members of X that are covered by K′.
If K′ does not cover X, then t ≤ x− 1, and hence − k′

2k + t ≤ − k′

2k + x− 1 < x− 1. In other
words, the action T yields a payoff which is strictly less than the payoff x−1 which corresponds
to the action {w}. Hence we conclude that if K′ does not cover X, then the corresponding
action T is not a best global response.

If K′ ⊆ K covers X, then t = x, and hence − k′

2k + t = − k′

2k + x > x− 1. Thus, the action T
yields a strictly higher payoff than the payoff x − 1 which corresponds to the action {w}. So
every action that is a set cover yields a strictly higher payoff than the payoff from the action
{w}. Of all actions that are set covers, the ones with the lowest cardinality are best global
responses, because the payoff −k′

2k + x is maximal if k′ is minimal. We therefore conclude that
each best global response of agent y with respect to network g corresponds to a minimum set
cover.

Since the transformation from any MSC instance to a BGRP instance can be done in
polynomial time and since MSC is NP-hard (see Karp (1972)), it follows that BGRP is also
NP-hard. �

Observe that BGRP can be interpreted as the problem of maximizing a set function, since the
playing agent i and the network g−i are fixed in the BGRP. Hence we define a specific set
function f : 2N\{i} → R as

f(S) = πi(g−i + {(j, i) : j ∈ S})

for each S ⊆ N \ {i}, where network g and agent i are fixed.
A set function f is called submodular if

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) for all S, T ⊆ N \ {i},

and supermodular if the left-hand side is less than or equal to the right-hand side.
For maximizing supermodular set functions in general, which is equivalent to minimizing

submodular set functions, Grötschel et al. (1981) proposed a polynomial-time algorithm. Al-
ternative algorithms that are more efficient in practice are proposed independently by Schrijver
(2000) and Iwata et al. (2001).

Garey and Johnson (1979) show that the problem of maximizing submodular set functions
is NP-hard, due to the fact that it is a general case of the max-cut problem. The problem of
maximizing submodular set functions has also been studied by Nemhauser et al. (1978), Lovasz
(1983), and Lee et al. (1996), among others.

It can be shown that f is submodular whenever the corresponding payoff function π is a
B&G function, due to the fact that for disjoint actions S and T , the sets Ni(g−i+{(j, i) : j ∈ S})
and Ni(g−i +{(j, i) : j ∈ T}) may intersect. Hence, the BGRP is a special case of the NP-hard
problem of maximizing a submodular set function. In Theorem 3 we have shown that even this
special case is NP-hard.

4 Nash networks

In this section we study the existence of Nash networks. Bala and Goyal (2000a) show that
global-Nash networks exist when payoff functions are B&G functions with homogeneous link
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costs and profits. For B&G functions with owner-homogeneous link costs, i.e. cij = ci, and
heterogeneous profits, the existence of Nash networks has been proved independently by Derks
et al. (2008) and Billand et al. (2008). Derks and Tennekes (2008b) provide an alternative and
easy accessible proof that is based on an idea of Billand et al. (2008). By means of a counterex-
ample, Derks et al. (2008) show that Nash networks may fail to exist for the heterogeneous link
costs case, even if link costs are arbitrarily ‘close’ to the situation of owner-homogeneity, i.e.
|cij − cik| ≤ ε, for an arbitrarily small ε > 0, and for all i, j, and k.

In this section we prove that global-Nash networks exist for a class of payoff functions that
is defined by a framework of axiomatic payoff properties. These properties and proofs are
oriented locally. First, in subsection 4.1, we prove that local-Nash networks with some specific
architecture are also global-Nash when the payoff function satisfies three of our properties.
Then, in subsection 4.2, we show the existence of local-Nash networks when the payoff function
satisfies a specified set of properties. The local-Nash networks that we find are also global-
Nash when combining these properties. We choose the properties in such a way that they are
intuitive and such that they allow us to proceed with our line of proof in the most general way. In
subsection 4.3, we show that the properties are independent of each other, and in subsection 4.4,
we show which B&G functions satisfy the properties, and furthermore, we provide examples of
non B&G functions that satisfy the properties as well.

4.1 Local-Nash and global-Nash networks

Let a network be called proper if the outdegree of each agent is at most one. An illustrative
proper network is depicted in Figure 3.

Figure 3: A proper network

Further, let agent i be a topagent in network g whenever he observes all agents in his
component, i.e. Ni(gi) \ {i} = Car(gi). Notice that a topagent either is contained in a directed
cycle, or he has no outgoing links. Further, notice that in proper networks also the converse
holds.

We show that for a specific class of payoff functions every proper local-Nash network is also
global-Nash. This class consists of all payoff functions that have three properties which we will

8



define next: DA (short for disjoint additivity), NA (short for naturality), and DE (short for
downstream efficiency).

Two networks g and g′ are said to be disjoint with respect to an agent i, or i-disjoint, if no
agent or only agent i is active in both g and g′: Car(g) ∩ Car(g′) ⊆ {i}.

Property DA We say that a payoff function π is disjoint additive (DA for short), if for each
two networks g and g′, disjoint w.r.t. an agent i, we have

πi(g + g′) = πi(g) + πi(g′).

Let a link (j, i) be called profitable if:

πi(g) ≥ πi(g − (j, i)) if (j, i) ∈ g,

and
πi(g + (j, i)) ≥ πi(g) if (j, i) 6∈ g.

Thus, each profitable link that is not present yet, is worth adding, and each non-profitable
link that is present, is worth deleting. Although the notion of profitability is very intuitive in
network formation, we propose another notion that indicates the importance of a link.

Let a link (j, i) be beneficial in g if it is profitable in gj
−i, i.e.

πi(g−ij) ≥ πi(g
j
−i).

Observe that (j, i) does not have to be contained in g. A network is called beneficial if the
existing links in that network are beneficial.

Lemma 4 If network g is proper, and π is disjoint additive, then profitability and beneficiality
are equivalent notions for existing links; more specifically,

πi(g)− πi(g − (j, i)) = πi(g−ij)− πi(g
j
−i) for all (j, i) ∈ g (2)

πi(g + (j, i))− πi(g) = πi(g−ij)− πi(g
j
−i) for all (j, i) 6∈ g with j 6∈ Ni(g) (3)

Proof. First, let (j, i) ∈ g. Since g is proper, g−ij and g − g−ij are i-disjoint. Therefore, by
DA we have

πi(g) = πi(g−ij) + πi(g − g−ij). (4)

Also, gj
−i and g − gj

−i are i-disjoint. Hence by DA we obtain

πi(g − (j, i)) = πi(g
j
−i) + πi(g − gj

−i − (j, i)). (5)

With g − g−ij = g − gj
−i − (j, i), we obtain (2) from (4) and (5).

Now, let (j, i) 6∈ g, with j 6∈ Ni(g). Networks g−ij and g − gj
−i are i-disjoint, because

suppose otherwise: then, an agent k 6= i exists, active in both g−ij and g − gj
−i. This implies

that (k, i) ∈ g, because any other link attached to k is inside g−ij , and therefore not present in
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g − gj
−i. Since g is proper, and k has one outgoing link in it (link (k, i)), he cannot have other

outgoing links. Therefore, k is a topagent in gj
−i, and thus observes all agents who are active

in gj
−i, including j. This implies that j ∈ Ni(g), which is a contradiction. By DA we obtain

πi(g + (j, i)) = πi(g−ij) + πi(g − gj
−i). (6)

Since g−ij and g − gj
−i are i-disjoint, networks gj

−i and g − gj
−i are also i-disjoint. By DA we

obtain

πi(g) = πi(g
j
−i) + πi(g − gj

−i). (7)

Hence, (3) follows from (6) and (7). �

The next payoff property states that connecting to an agent who is already observed is not
a strictly improving action.

Property NA We say that π is natural (NA for short) if

πi(g + (k, i)) ≤ πi(g)

whenever k ∈ Ni(g), i.e. there is a directed path from k to i in the network g.

Thus, in a network where i already observes k via another link, say (j, i), the addition of
(k, i) is not an improving action due to NA. The next payoff property can be seen as a ”twin”
property.

Property DE Payoff function π satisfies DE (short for downstream efficiency) if

πi(g + (k, i)) ≤ πi(g + (j, i))

for any network g where (j, i) 6∈ g and (k, i) 6∈ g and where a directed path exists from k to j
in g−i.

Due to DE, the addition of link (j, i) is at least as good as the addition of (k, i). Observe that
the difference between NA and DE is that in the situation where NA is applicable, link (j, i)
does exist (on the directed path from k to i), whereas in the situation where DE is applicable,
link (j, i) does not exist.

In the following theorem we show that proper local-Nash networks are also global-Nash
whenever the payoff function satisfies the three introduced properties.

Theorem 5 Let the payoff function π satisfy DA, NA and DE. Then each proper local-Nash
network is global-Nash.

Proof. Let g be a proper local-Nash networks. Suppose to the contrary that g is not global-
Nash, say i can strictly improve in g. Let S = Nd

i (g) be his current action, and let S̃ be a
strictly improving action, such that |S̃ \ S| is as small as possible and such that among those,
|S \ S̃| is as small as possible. Let g̃ be the network obtained after i plays S̃.

Let j ∈ S̃ \ S.
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Suppose that j ∈ Ni(g). Then agent i observes j via, say, agent k ∈ S in g, i.e. there is a
directed path from j to k in g−i = g̃−i. By DE the action S̃ − j + k is at least as good as S̃.
Now |(S̃ − j + k) \ S| < |S̃ \ S|, so that we have a contradiction.

Hence j 6∈ Ni(g). Suppose that networks g̃−g−ij and g−ij are not i-disjoint. Then an agent
k ∈ S̃ ∩ Car(gj

−i) exists. By DE we may assume that j is a topagent in g−i, and therefore a
directed path exists from k to j in g−i. Hence, by NA, it follows that S̃ − k is at least as good
as S̃. Now |(S̃ − k) \ S| < |S̃ \ S|; a contradiction. Therefore, networks g̃ − g−ij and g−ij are
i-disjoint. Also, g̃ − g−ij = g̃ − (j, i)− gj

−i and gj
−i are i-disjoint.

By DA we obtain

πi(g̃) = πi(g̃ − g−ij) + πi(g−ij), and (8)

πi(g̃ − (j, i)) = πi(g̃ − (j, i)− gj
−i) + πi(g

j
−i). (9)

Since g is local-Nash, we have πi(g+ (j, i)) ≤ πi(g). By Lemma 4, it follows that πi(g−ij) ≤
πi(g

j
−i). Hence by (8) and (9) we obtain πi(g̃) ≤ πi(g̃ − (j, i)). Hence S̃ − j is at least as good

as S̃, with |(S̃ − j) \ S| < |S̃ \ S|. This is a contradiction.
We conclude that S̃ ⊆ S.
Let j ∈ S \ S̃.
Suppose that j ∈ Ni(g̃), say (j, k) ∈ g̃. Then, also (j, k) ∈ g. Since (j, i) ∈ g, agent j has two

outgoing links, which is a contradiction with the properness of g. We conclude that j 6∈ Ni(g̃).
Since g is proper local-Nash, (j, i) is profitable in g and by Lemma 4 also beneficial in g.

Since gj
−i = g̃j

−i, link (j, i) is also beneficial in g̃. Further, since g̃ ⊂ g, network g̃ is also
proper. By Lemma 4, (j, i) is also profitable in g̃. Hence S̃ + j is at least as good as S̃, with
|S \ (S̃ + j)| < |S \ S̃|. This is a contradiction.

Hence we conclude that S̃ = S, which contradicts S̃ being a strict improvement. Therefore,
g is global-Nash. �

For more general payoff functions, proper local-Nash networks need not to be global Nash
as can be seen by the following example.

Example 6 Consider the following payoff function:

πi(g) =
∣∣{j ∈ Nd

i (g) : j 6∈ Ni(g − (j, i))
}∣∣ . (10)

This payoff function satisfies DA, since it can be written as the sum over payoff’s w.r.t. i-
disjoint subnetworks. Further, NA is satisfied because the addition of link (k, i) to a network
in which a directed path from k to i already exists is not profitable. However, it does not satisfy
DE, as the following instance shows.

Consider a network on 4 agents. Let the payoff function π1(g) be defined as (10), and let
π2(g) = π3(g) = π4(g) = 0 for all networks g. Then, the network depicted in Figure 4(a) is a
proper local-Nash network. However, it is not global-Nash, because agent 1 can switch to the
network depicted in Figure 4(b), which yields payoff 2 instead of 1. This network is global-Nash.

11
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Figure 4: A proper local-Nash network that is not global-Nash (a), and a global-Nash network
(b).

4.2 Existence of local-Nash networks

Next, we identify a class of properties for which we prove the existence of proper local-Nash
networks. For this, we introduce four new properties. These properties only regard beneficiality.
Recall that a link (j, i) is beneficial in g whenever πi(g−ij) ≥ πi(g

j
−i). The properties concern

how beneficiality of a link is preserved when the network is changed, or how beneficiality of a
link depends on the beneficiality of other links.

Property BT Payoff function π satisfies BT (short for beneficial topagent) if the following
holds. Let link (k, i) be beneficial in network g, and suppose there are topagents in the compo-
nent gk

−i. Then there is a topagent j in gk
−i such that πi(g−ij) ≥ πi(g−ik).

Notice that this property is implied by DE. The following property is also implied by DE.

Property BF Payoff function π satisfies BF (short for beneficial farthest) if the following
holds. Let link (k, i) be beneficial in network g; let the component gk

−i be proper and let agent
i be active in gk

−i (there is an outgoing link at i in gk
−i). Then also link (j, i) is beneficial where

j is the agent farthest away from i (counted in number of links) in network g.

Notice that since component gk
−i is proper and i is active in it, agent j is the unique topagent

who is farthest away from i in network g. Property BF is also implied by DE. However, it is
independent of BT as we will see in subsection 4.3. Furthermore, BT and BF do not imply
DE. This is illustrated by Example 6, where the payoff function given by (10) does not satisfy
DE, whereas it satisfies both BT and BF, since πi(g−ij) = 1 and πi(g

j
−i) = 0 for each network

g and each agent j.
The following property describes that beneficial links remain beneficial while the network

grows:

Property BG Payoff function π satisfies BG (short for beneficial growth) if πi((g+(k, r))−ij) ≥
πi((g + (k, r))j

−i) for any two agents k, r, whenever πi(g−ij) ≥ πi(g
j
−i).

Notice that in case we have r = i, BG trivially holds, since (g + (k, r))−ij = g−ij .
The final property states that beneficiality is preserved when we delete a spoke from the

network. Here, a spoke in a network g is a link (k, r) such that both agents k and r reside on
a directed cycle, with link (k, r) not being part of it.

12



Property BS Payoff function π satisfies BS (beneficial shrink) if πi((g − (k, r))−ij) ≥ πi((g +
(k, r))j

−i) whenever πi(g−ij) ≥ πi(g
j
−i) and link (k, r) is a spoke in g.

The properties BF, BG and BS are trivially satisfied by payoff functions for which πi(g) ≥
πi(g−i) for all networks g. An example of such a function is πi(g) = |Ni(g) \ {i}| being the
number of agents in g observed by i. This function also satisfies DA, NA and BT.

Let us call a payoff function orderly if it satisfies the properties DA, NA, BT, BF, BG,
and BS.

Let κ(g) be the connection number of network g, defined as

κ(g) =
∑
i∈N

|Ni(g)|.

Observe that the addition of a link or the deletion of a spoke does not decrease the connection
number. Now, we state our main result:

Theorem 7 For orderly payoff functions any proper, beneficial network with maximal connec-
tion number is a local-Nash network.

Proof. Observe that the empty network is proper and beneficial. So, there is a proper,
beneficial network, say g, such that among these networks the connection number κ(g) is
maximal. We prove that g is local-Nash by deriving a contradiction in the sense that otherwise
a proper, beneficial network exists with a higher κ-value than g.

Suppose there is a local action by agent i that strictly increases i’s payoff. Clearly, this
action is not a pass. This local action is neither a deletion because all links of agent i are
beneficial, and therefore also profitable by Lemma 4 due to g being proper and πi satisfying
DA.

Suppose the strictly improving local action is a replacement, say link (k, i) is replaced by link
(j, i), and let the obtained network be g̃ = g−(k, i)+(j, i). Notice that k is the unique topagent
in gk

−i, since g is proper. If both agents k and j are in component gk
−i, then, by property BT

it follows that πi(g−ij) ≤ πi(g−ik). However, g − g−ik and g̃−ij = g−ij are i-disjoint and their
union is g̃, so that by DA we have

πi(g − g−ik) + πi(g−ik) = πi(g) < πi(g̃) = πi(g − g−ik) + πi(g−ij),

i.e., πi(g−ij) > πi(g−ik); a contradiction.
Therefore, agents k and j are in different components of g−i. The networks g−ik and g −

g−ik +(j, i) are i-disjoint, with union equal to g+(j, i), and the networks gk
−i and g−g−ik +(j, i)

are i-disjoint, with union g − (k, i) + (j, i). Applying DA twice, we obtain

πi(g + (j, i)) = πi(g − g−ik + (j, i)) + πi(g−ik)
≥ πi(g − g−ik + (j, i)) + πi(gk

−i)
= πi(g − (k, i) + (j, i)).

The inequality follows from the beneficiality of (k, i). We conclude that the addition of (j, i) is
at least as good as the replacement of link (k, i) in g by (j, i).
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So, we may assume that the strict improving local action is an addition. Let this addition
be (j, i) and let the obtained network be

g′ = g + (j, i). (11)

If the component (g′)j
−i, which is equal to gj

−i, is already linked up with i, say (k, i) ∈ g and
k ∈ Car(gj

−i), then k is the unique topagent in gj
−i, due to the properness of g. So, there is a

directed path from j to k in g, and with (k, i) there is a directed path from j to i in g, implying
πi(g′) = πi(g + (j, i)) ≤ πi(g) because of NA. This is a contradiction to the fact that adding
(j, i) is strictly improving.

Therefore, the component (g′)j
−i = gj

−i is not linked up with i in g, and by BT we may
assume that j is a topagent in gj

−i.
Since g is proper, and since j 6∈ Ni(g), by Lemma 4 and DA, link (j, i) is beneficial in

g′. Also, the other links are beneficial in g′ due to the beneficiality of g and BG. So, g′ is a
beneficial network. Further, the number κ(g′) is higher than κ(g), so that g′ cannot be proper,
because by assumption there cannot be proper and beneficial networks with connection number
higher than κ(g). The only outdegree changed by going from g to g′ is the one of agent j.
Therefore, the outdegree of j in g′ equals 2, say next to link (j, i), also (j, k) is present in g′.
Since j is a topagent in gj

−i there is a directed path from k to j in gj
−i. Observe that this is

also a directed path in (g′)j
−k.

Extending the directed path from k to j via (j, i) in (g′)j
−k in a unique way (since it is a

proper network), we arrive at an agent, say r, farthest away from k (see Figure 5). Since (j, k)
is beneficial for k, in g′, also (r, k) is beneficial in g′ due to BF.

j i

k r

Figure 5: The addressed links and directed paths (dashed arcs) of network g′.

Consider the addition of (r, k) in g′. From BG and (r, k) being beneficial in g′, we conclude
that g′ + (r, k) is beneficial. Further, (j, k) is a spoke in this network. After deletion of this
spoke, by BS we again obtain a beneficial network

g′′ = g′ + (r, k)− (j, k), (12)

with a connection number at least as high as κ(g′) and thus higher than κ(g). Hence g′′ cannot
be proper. This implies that the outdegree of agent r is greater than 1 in g′′. Besides (r, k) we
have another link, say (r, s), and s is necessarily located on the unique directed path from k to
r in g′, for otherwise, s would be farther away from k than r is.

This directed path also exists in g′′, and together with (r, k) it forms a directed cycle in g′′

with (r, s) being a spoke of it (see Figure 6). By deletion of (r, s) we obtain a beneficial network

g′′′ = g′′ − (r, s), (13)
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j i

k r
s

Figure 6: Network g′′, where s is located on the directed path from k to r.

due to BS. Its connection number is higher than the one of g. Observe that g′′′ is proper:
agents j and r (the only agents whose outgoing links are changed w.r.t. g) both have exactly
one outgoing link in g′′′. This is a contradiction by our assumption that g is a proper network
with maximal connection number. We conclude that there are no strictly improving additions
available, i.e., g is local-Nash. �

Proper, beneficial networks with maximal connection numbers are not the only local-Nash
networks. The following example shows that even among the non-proper networks local-Nash
networks may be found.

Example 8 Consider the B&G function πi(g) = |Ni(g)| − |Nd
i (g)|. This payoff function is

orderly as we will see in subsection 4.4. The network depicted in Figure 7 is local-Nash, but not
proper since agent i has two outgoing links.

j

i

k

Figure 7: A local-Nash network that is not proper.

Notice that this network is not strict local-Nash, because the replacement of (j, i) by (j, k)
yields the same payoff for agent j. When agent i subsequently removes the spoke (k, i), we
obtain a local-Nash network, which is also proper.

The following example shows that even strict local-Nash networks may not be proper.

Example 9 For even n and n ≥ 4, let g̃ be the following network architecture. Let all agents be
contained on one undirected cycle, where the directions of the links are alternated. In Figure 8,
network g̃ is depicted for n = 14.

Let π be a payoff function, for each agent i defined as πi(g) = 1 whenever g = g̃, and
πi(g) = 0 otherwise. Since network g̃ is the unique network for which each agent yields a payoff
strictly higher than 0, it is a strict local-Nash network.

Now we show that π is orderly.
DA is satisfied, since g̃ cannot be the union of two i-disjoint networks, and it is not disjoint

from any non-empty network.
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Figure 8: Example of network g̃

Property NA is also satisfied, because of the following. For any network g where a directed
path of at least two links exists from k to i, it follows that πi(g + (k, i)) = πi(g) = 0.

Since πi(g−ij) = πi(g−i) = 0 for all networks g, all links are beneficial in any network.
Therefore, BF, BS, and BG are also satisfied. Further, since all links are equally beneficial,
property BT is also satisfied.

When we relate the previous theorem with Theorem 5 (proper local-Nash networks are
global-Nash if the payoff function satisfies DA, NA and DE) and with the observation that
BT and BF are implied by DE, we obtain the following corollary.

Corollary 10 For any payoff function that satisfies DA, NA, DE, BG and BS, global-Nash
networks exist. Specifically, the proper and beneficial networks with maximal connection number
are global-Nash.

4.3 Property independence

In this subsection, we show the independence of the six properties that define orderliness. This
is done by an exposition of examples of payoff functions, fulfilling all but one property.

Theorem 11 The properties DA, NA, BT, BF, BG, BS are independent of each other.

Proof. We show that for each property a payoff function exists which does not satisfy that
property while it does satisfy all other properties.

(all but DA) The following payoff function satisfies all properties, except DA:

πi(g) = |Ni(g) \ {i}|2 (14)

Property DA is not satisfied, because for any two i-disjoint networks g and g′ we have
|Ni(g)\{i}|2 + |Ni(g′)\{i}|2 < |Ni(g∪g′)\{i}|2. The properties NA and BT are trivially
satisfied and the others because πi(g) ≥ πi(g

j
−i) for all networks g.
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(all but NA) The following payoff function satisfies all properties, except NA:

πi(g) = |Nd
i (g)| (15)

Property NA is not satisfied, because πi(g+(k, i)) > πi(g) for a network g where (k, i) 6∈ g,
and where a directed path from k to i exists. Property DA is clearly satisfied, and also
the four properties that concern beneficiality, because πi(g−ij) = 1 for all g and j.

(all but BT) Let agent 1 be a special member of N , and let i ∈ N \ {1}. The following payoff
function satisfies all properties, except BT:

πi(g) =

{
1 if 1 ∈ Nd

i (g) and 1 6∈ Ni(g − (1, i));
0 otherwise.

(16)

This payoff function does not satisfy BT, because in any network g1
−i where agent 1 is not

a topagent, we have πi(g−i1) = 1, while πi(g−ij) = 0 for each topagent j ∈ Car(g1
−i). It

can be easily verified that properties NA and DA are satisfied. The remaining properties
are also satisfied since πi(g

j
−i) = 0 and πi(g−ij) ≥ 0 for each network g and each agent j.

(all but BF) Let agent 1 be a special member of N , and let i ∈ N \ {1}. The following payoff
function satisfies all properties, except BF.

πi(g) =

{
0 if Ni(g) = N, 1 6∈ Nd

i (g), |Nd
i (g)| = 1;

−|Nd
i (g)| otherwise.

(17)

Observe that πi(g−i) = 0 for all networks g.

Property BF is not satisfied, because of the following. Let g be a network where all agents
in N \ {i} are contained in one directed cycle, and let link (i, k) also be present. Further,
let 1 be the agent who is farthest away from i (so, (1, k) ∈ g). Then πi(g−ik) = 0 while
πi(g−i1) = −1.

It can be easily but tediously verified that property DA is satisfied. Property NA is
satisfied, because adding a link (k, i) to network g where a directed path from k to
i exists, implies that i will have multiple links, and therefore his payoff will decrease.
Property BT is satisfied because only link (1, i) can be beneficial, which is the case only
if Ni(g−i1) = N , which implies that 1 is a topagent. By similar reasoning, properties BG
and BS are satisfied.

(all but BG) The following payoff function satisfies all properties, except BG.

πi(g) =
∣∣Nd

i (g) ∩ T (g−i)
∣∣− ∣∣Nd

i (g) \ T (g−i)
∣∣ (18)

where T (g−i) is the set of topagents in g−i who do not have outgoing links.
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This payoff function does not satisfy BG, because due to the addition of link (k, r), r 6= i
to g, we may have that |T ((g + (k, r))−i)| < |T (g−i)|, such that πi(g−ij) ≥ πi(g

j
−i) and

πi((g + (k, r))−ij) < πi((g + (k, r))j
i ). Property DA is satisfied, because the sets Nd

i (g)
and T (g) can be decomposed into disjoint subsets w.r.t. i-disjoint subnetworks. Property
NA is satisfied, because in a network g where a directed path exists from k to i, we have
k 6∈ T (g), and therefore the payoff does not increase when (k, i) is added. Property BT
is trivially satisfied since (k, i) can only be beneficial if k is a topagent in g−i, by (18).
Furthermore, a topagent k in g−i such that (k, i) is beneficial, has no outgoing links in
g−i (since k ∈ T (g−i)). Therefore, if g is proper, and if i has an outgoing link to the
component gk

−i, then it follows that k is the agent who is farthest away from i in g. Hence
BF is also satisfied. Property BS is satisfied because the deletion of a spoke (k, r) in g
does neither affect the set T (g−i) nor the set Nd

i (g).

(all but BS) The following payoff function satisfies all properties, except BS.

πi(g) =
∣∣Ki(g)

∣∣− ∣∣Nd
i (g)

∣∣ (19)

where Ki(g) is the set of spokes that i views in g, i.e.

Ki(g) = {(k, r) : r ∈ Ni(g) and (k, r) is a spoke}

Property BS is not satisfied, because by removing a spoke (k, r) in a network g, the
cardinality of Ki(g) may decrease such that πi(g−ij) ≥ πi(g

j
−i) and πi((g − (k, r))−ij) <

πi((g − (k, r))j
−i). Clearly, this payoff function satisfies NA and DA. For the properties

BT and BF and BG notice that the payoff πi(g−ij) only depends on the number of
spokes viewed in g−ij . Properties BT and BF are satisfied, because of the following. Let
k be an agent in a network g and let j be a topagent in gk

−i. Since i views at least as many
spokes in g−ij as in g−ik, BT and BF are satisfied. Property BG is satisfied because for
any network g and any agent j, the number

∣∣Ki(g−ij)
∣∣ cannot decrease by adding a link

to g.

�

We already observed that DE implies BT and BF, and not vice versa. In the following
theorem, we show that the properties that are needed for Corollary 10, which are NA, DA,
DE, BS and BG, are independent of each other as well.

Theorem 12 The properties DA, NA, DE, BG, BS are independent of each other.

Proof. By Theorem 11 we know that DA, NA, BG and BS are independent of each other.
Therefore it remains to show that DA, NA, BG and BS are independent of DE.

Payoff function (10) in Example 6 does not satisfy DE, whereas it satisfies all other prop-
erties. In the example it was shown that DA and NA are satisfied. The other properties, BG
and BS, are trivially satisfied since πi(g

j
−i) = 0 and πi(g−ij) = 1 for all g and j. Hence NA,

DA, BG and BS do not imply DE.
To show that DE does not imply DA, NA, BG nor BS, consider the payoff functions (14),

(15), (18) and (19). They do not satisfy DA, NA, BG and BS respectively. However, it can
be easily checked that these functions do satisfy DE.

We conclude that the properties DA, NA, DE, BG, BS are independent of each other. �
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4.4 Relationship with B&G payoff functions

In this subsection, we analyze B&G functions in view of the framework of payoff properties as
discussed previously. We prove that B&G functions with owner-homogeneous link costs and
heterogeneous profits are orderly and also satisfy DE. Then, we prove that B&G functions
with heterogeneous link costs that satisfy a system of triangle inequalities, are orderly without
necessarily satisfying DE. Further, we provide several examples of payoff functions that satisfy
all properties, while they fall outside the class of B&G functions.

For B&G functions, we may assume that vii = 0, because the transformation π′i(g) =
πi(g)− πi(g−i) = πi(g)− vii does not have influence on the strategic behavior of agent i.

In the next lemma, we prove that all B&G functions satisfy four properties.

Lemma 13 Let πi be a B&G function. Then πi satisfies DA, NA, BG and BS.

Proof.
(DA) For each two i-disjoint networks g and g′ it holds that Ni(g)∩Ni(g′) = {i} and Nd

i (g)∩
Nd

i (g′) = ∅. Since we assumed that vii = 0, it follows that πi(g+g′) = πi(g)+πi(g′). Therefore
π satisfies DA.
(NA) If a directed path exists from k to i in network g where link (k, i) does not exist, then
Ni(g) = Ni(g + (k, i)), and Nd

i (g) ⊂ Nd
i (g + (k, i)). Hence property NA is satisfied.

(BG) Let g be a network where (j, i) is beneficial. Since Ni(g−ij) ⊆ Ni((g + (k, r))−ij) and
Nd

i (g−ij) = Nd
i ((g + (k, r))−ij) = 1, property BG is satisfied.

(BS) Let g be a network that contains a spoke (k, r). Let (j, i) be beneficial in g. Since
Ni(g−ij) = Ni((g − (k, r))−ij) and Nd

i (g−ij) = Nd
i ((g − (k, r))−ij) = 1, link (j, i) is also

beneficial in g − (k, r). Hence BS is satisfied. �

In the next result, we show that B&G functions with owner-homogeneous link costs satisfy
all properties, and therefore imply the existence of global-Nash networks (by Corollary 10).
This result is also proved by Billand et al. (2008) and independently by Derks et al. (2008).

Theorem 14 Let π be a B&G function with owner-homogeneous link costs, i.e. cij = ci for
all i, j ∈ N . Then π satisfies DA, NA, DE, BG, and BS, i.e. global-Nash networks exist.

Proof. By Lemma 13 it follows that π satisfies DA, NA, BG and BS.
Let g be a network where (j, i) 6∈ g, (k, i) 6∈ g, and where a directed path exists from k to

j in g−i. Then Ni(g + (j, i)) ⊇ Ni(g + (k, i)) and |Nd
i (g + (j, i))| = |Nd

i (g + (k, i))|. Hence,
property DE is satisfied. �

Global-Nash networks do not exist for B&G functions with heterogeneous link costs in
general. Even if these B&G functions are restricted by specific conditions, the existence of
global-Nash networks is not guaranteed. This is illustrated by an example provided by Derks
et al. (2008). In this example, global-Nash networks do not exist, while the link costs are
arbitrarily close to the situation of owner-homogeneity, i.e. |cij − cik| ≤ ε, for all i, j, k ∈ N and
an arbitrarily ε > 0.

The existence of local-Nash networks is proved in Theorem 7 for orderly payoff functions.
Notice that these payoff functions satisfy BT and BF instead of DE (which implies both of
them). In the next theorem we provide conditions for B&G function with heterogeneous link
costs such that these functions are orderly.
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Theorem 15 Let πi be a B&G function with heterogeneous link costs and profits. If

cij ≤ vij +min(vik, cik), for all j, k ∈ N, (20)

then πi is orderly, i.e. local-Nash networks exist.

Proof. By Lemma 13, the properties DA, NA, BG and BS are satisfied. It remains to prove
that π satisfies BT and BF:
(BT) Let link (k, i) be beneficial in g. Then

∑
r∈Ni(g−ik) vir ≥ cik. If a topagent j exists in

the component gk
−i, then either k = j or a directed path from k to j exists. In the first case

BT is trivially satisfied. In the second case, it follows that Ni(g−ij) ⊇ Ni(g−ik) ∪ {j}. Since
cij ≤ vij + cik we have

πi(g−ik) =
( ∑

r∈Ni(g−ik)

vir

)
− cik

≤
( ∑

r∈Ni(g−ik)

vir

)
− (cij − vij)

≤
( ∑

r∈Ni(g−ij)

vir

)
− cij

= πi(g−ij).

Hence BT is satisfied by π.
(BF) Let gk

−i be a proper component of g where i has an outgoing link and let link (k, i) be
beneficial in g. Let j be a topagent in this component who is farthest away from i. If k = j
then BF is trivially satisfied. Otherwise a path from k to j exists. Therefore both agents j and
k are contained in Ni(g−ij). Since cij ≤ vij + vik it follows that πi(g−ij) ≥ vij + vik − cij ≥ 0.
Hence BF is satisfied. �

For a full characterization of B&G functions that satisfy the properties of our framework,
and hence imply the existence of local-Nash networks, we refer to Derks and Tennekes (2007).

Observe that local- and global-Nash networks also exist for B&G functions under conditions
that are weaker than (20):

Proposition 16 Let π be a B&G function with heterogeneous link costs and profits. If

cij ≤

{
vij + cik for all i, j, k ∈ N,∑

j∈N vij

(21)

then any directed cycle joining all agents is a local- and global-Nash network.

The proof is left to the reader. Also without proof we notice that a B&G function that
fulfills (21) does not necessarily satisfy BF.

Our framework of properties is also satisfied by non B&G payoff functions. Consider the
following examples:

πi(g) = |Nd
i (g) ∩ T (g−i)|;

πi(g) = |Ki(g)|;
πi(g) = |C(g) ∩Ni(g)| − |Nd

i (g)|,
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where C(g) is the set of agents that are contained in a directed cycle in g, and where T (g) and
Ki(g) are respectively defined as the set of topagents in g who do not have outgoing links, and
the set of spokes in g that i observes. These payoff functions are orderly and also satisfy DE.
Payoff function (10) in Example 6, which is also studied in the proof of Theorem 12, is a non
B&G payoff function that is orderly whereas it does not satisfy DE.

These payoff functions extend the class of B&G functions in the following way. They do
not only consider which agents are (directly) observed, i.e. which agents are contained in the
sets Ni(g) and Nd

i (g). They also take other aspects of the network architecture into account.
In the given examples, the sets T (g−i), Ki(g), and C(g) illustrate this.

5 Dynamics

In this section we analyze a dynamic process of iterated local actions that takes place without
central coordination. We consider a procedure in which the agents alternately play good local
responses. Recall that an agent plays a good response, if his payoff does not decrease. If this
payoff remains the same, then we say that this agent plays a neutral response.

The dynamic procedure that we study in this paper, starts with an arbitrary initial network.
Then, one agent is selected at random. One of his good local responses is selected at random,
and being played. These steps are repeated. Formally, we define the procedure on base of the
following assumptions.

A-1 Let the initial network be a network that is arbitrarily chosen from G.

A-2 At the beginnig of each stage, an agent is selected at random, where each agent has a
positive stage independent probability to be selected.

A-3 At each stage, the agent who is selected plays a good local response that satisfies the
following three assumptions.

A-3a A neutral addition is not allowed.
A-3b A neutral deletion of link (j, i) in network g is only allowed whenever Ni(g−(j, i)) =

Ni(g).
A-3c A neutral replacement of (k, i) by (j, i) in network g is only allowed when a directed

path exists from k to j in network g−i.

He chooses a good local response at random, where all allowed good local responses have
a positive probability to be chosen that only depends on the network.

We say that the procedure terminates at a network g if this network is reached, and fur-
thermore, if a pass is the only allowed good local response for each agent i with respect to
g.

We need assumptions A-3a to A-3c in order to prevent the following situation. Consider
a game where an agent i is present, such that πi(g) = 0 for all networks g. When the proce-
dure reaches some local-Nash network, this agent may perform randomly chosen neutral local
responses, such that the obtained network is not local-Nash again.

In the following lemma, we show that the procedure defined by A-1 to A-3c terminates
whenever a proper local-Nash network is reached.
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Lemma 17 Let the dynamic procedure be defined by assumptions A-1 to A-3c. If this procedure
reaches a proper local-Nash network, then it also terminates at this network.

Proof. Let g be a proper local-Nash network that is reached by the dynamic procedure. Since
g is local-Nash, it can only be modified by neutral responses. Let i be an agent who can apply
a neutral response to g. We know by assumption A-3a that this action cannot be a neutral
addition.

Suppose that this action is a deletion. Since g is proper, each deletion strictly reduces the set
of observed agents. By assumption A-3b, these deletions are not allowed. Hence we conclude
that this action cannot be a deletion.

Suppose that this action is a replacement. By assumption A-3c, a neutral replacement of
(k, i) by (j, i) is only allowed when a directed path exists from k to j that does not visit agent
i. In that case, agent k has two outgoing links: (k, i) and a link on the path from k to j. This
contradicts that g is proper.

Hence we conclude that the only neutral response that can be applied to g is a pass. There-
fore, the procedure terminates at network g. �

We prove that the procedure reaches a proper local-Nash network with probability 1. First,
we show that a finite sequence of good local responses exists that can be applied iteratively
to any arbitrary network such that the obtained network is local-Nash. This sequence starts
with actions such that the initial network is reshaped to a proper and beneficial network.
From there, we re-use the result of the proof of Theorem 7 which states that if a proper and
beneficial network is not local-Nash, then another proper and beneficial network exists with a
higher connection number. Iteratively using this result, we obtain a network with a maximal
connection number, which implies that this network is proper, local-Nash.

Lemma 18 Let π satisfy DA, NA, and DE. Then, for any network in G, there exists a finite
sequence of good local responses that leads to a proper and beneficial network.

Proof.

Step 1 Let g ∈ G. First we make g proper by applying good local responses. If g is already
proper, then continue to step 2. Otherwise an agent i exists in g who has at least two outgoing
links, say (i, j) and (i, k) (see Figure 9).

j

i
k

Figure 9: An agent with two outgoing links

Two cases are distinguished:

A: There is a directed path from i to an agent ` with outdegree 0, starting with link (i, k). The
property DE implies that the link (i, j) may be replaced by (`, j). This action decreases
the total outdegree of the agents with multiple outgoing links.
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B: None of the directed paths starting with link (i, k) end at an agent with outdegree 0. Either
there is a directed cycle C containing (i, k), or there is a directed path starting with link
(i, k) and ending at an agent ` on a directed cycle. In the latter case we may apply the
property DE and replace link (i, j) with (`, j). It is therefore no loss of generalization to
assume a directed cycle with (i, k) in it.

We distinguish four subcases:

1: Agent j is on cycle C. Then a directed path exists from i to j and hence the link (i, j)
can be deleted by NA.

2: There is a directed path from i to an agent with outdegree 0, and starting with link
(i, j). Case A addresses this situation.

3: There is a directed cycle C ′ containing (i, j). Going in the opposite direction over C ′,
let ` be the last agent on this cycle who is also on the cycle C through (i, k) (see
Figure 10). Using property DE we may replace link (i, k) with link (`, k), so that we

j

i

k

l
C’

C

Figure 10: Situation of case 3

can assume that both cycles C and C ′, have only agent i in common. This situation
is depicted in Figure 11.
Let agent ` be such that (`, i) is on cycle C (` may be the agent k). Now, replace

j

i

k

l

C’

C

Figure 11: Situation of case 3 continued

(i, j) with (`, j). This is a good local response by DE since there is a directed path
from i to `, without visiting j. After this replacement, the link (`, i) can be deleted
by NA since there is a directed cycle in which i, k, `, j are visited in this order, and
hence (`, i) is a spoke.
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4: there is a directed path starting with link (i, j) and ending at an agent ` on a directed
cycle. Then agent ` is not on the directed cycle through (i, k). (Otherwise, we would
have obtained a directed cycle containing (i, j), and this is already taken care of in
case 3.) Using property DE, we may replace link (i, k) with link (`, j), and by this
action we arrive at the situation treated in case 3.

As long as there are agents with outdegree greater than 1, g is not proper, and hence this
step can be repeated. Each time it is repeated, the outdegree of one agent is reduced without
changing the outdegrees of the other agents. Therefore, after a finite number of repetitions we
obtain a proper network.

Step 2 Let g′ be the proper network that results from step 1. If g′ is not beneficial, then a
non-beneficial link (j, i) exists in g′. Since g′ is proper and since DA is satisfied, by Lemma 4
we know that (j, i) is also not profitable, and therefore the deletion of it is a good local response.
Obviously, g′ remains proper after this deletion. Such deletions can be applied repeatedly until
we obtain a proper and beneficial network g′′. �

The next lemma shows that there exists a finite sequence of good local responses that can be
applied iteratively to any proper and beneficial network such that it leads to a proper local-Nash
network.

From the proof of Theorem 7 we may deduce that from a non local-Nash network which
is proper and beneficial, a network can be constructed which is also proper and beneficial but
which has a higher κ-value. We show that this construction can be done by a sequence of good
local responses.

Lemma 19 Let π be an orderly payoff function that satisfies DE. Let g be a proper and ben-
eficial network. There exists a finite sequence of good local responses that leads to a proper
local-Nash network.

Proof. Suppose that g is not local-Nash. Since g is proper and beneficial, we know from the
proof of Theorem 7 that a network can be obtained with a higher connection number. We show
that we can obtain this network by applying good local reponses.

Consider the networks g′, g′′ and g′′′ as defined in (11), (12), and (13). Network g′ is obtained
from g by a strictly improving addition, which is trivially a good local response. Network g′′

is obtained from g′ by a replacement of (j, k) by (r, k) where a directed path from j to r exists
in g. By DE, this is also a good local response. Finally, network g′′′ is obtained from g′′ by a
deletion of spoke (r, s) which is a good local response by NA. Observe that g′′′ is proper and
benefical. Therefore, if g′′′ is not local-Nash, we can repeat these good local responses until we
obtain a local-Nash network. At each iteration, the connection number increases. Since this
number is bounded by n(n−1), we obtain a local-Nash network in a finite number of iterations.
�

Combining Lemma’s 18 and 19 we obtain a sequence of networks that starts with an arbitrary
initial network and ends with a proper local-Nash network. Observe that the initial network
can be a non-proper local-Nash network. In the next theorem we show that our procedure
always reaches a local-Nash network.
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Theorem 20 Let π be an orderly payoff function that satisfies DE, and let the dynamic pro-
cedure be as defined by assumptions A-1 to A-3c. Then this procedure terminates at a proper
local-Nash network with probability 1.

Proof. First we prove that the procedure reaches a local-Nash network with probability 1,
and then we prove that it also terminates at this network with probability 1. By Lemma’s 18
and 19 we know that from an arbitrary network in G a finite sequence of good local responses
exists, such that the obtained network is proper and local-Nash. It is easily verified that these
good local responses satisfy assumptions A-3a to A-3c:

• the only additions in this sequence are strictly improving ones;

• each deletion is either validated as a good local response by NA (and hence it satisfies
assumption A-3b), or it is a deletion of a non-beneficial link in a proper network which is
a strictly improving deletion by DA;

• all replacements in this sequence are validated as good local responses by DE and hence
they satisfy assumption A-3c.

Hence, any sequence that is constructed in the proofs of Lemma’s 18 and 19 satisfies the
assumptions A-1 to A-3c.

By the construction of such a sequence, we know that each network in G appears at most
once in this sequence. Therefore, we conclude that the length of this sequence is upperbounded
by M , the finite number of networks in G.

At any stage, each agent has a strictly positive probability to be chosen (assumption A-2),
and each allowed good local response has a strictly positive probability to be chosen (assumption
A-3). Therefore, the probability that such a sequence will be played is lowerbounded by a strictly
positive probability ε.

The probability that the dynamic procedure does not reach a local-Nash network after M
steps is lower than 1− ε. If it does not reach a local-Nash network after M steps, then from the
last network, another sequence exists that leads to a local-Nash network. Hence, the probability
that the dynamic procedure does not reach a local-Nash network after 2M steps is lower than
(1−ε)2, and after kM steps lower than (1−ε)k, with k being a strictly positive natural number.
Hence we conclude that this probability converges to 0 as k becomes larger. Therefore, this
procedure reaches a proper local-Nash network with probability 1.

By Lemma 17 we know that this procedure also terminates at this network with probability
1. �

Combining this result with Theorem 5, saying that each proper local-Nash network is also
global-Nash, we obtain the following corollary.

Corollary 21 Let π be an orderly payoff function that satisfies DE, and let the dynamic pro-
cedure be as defined by assumptions A-1 to A-3c. Then this procedure terminates at a proper
global-Nash network with probability 1.

6 Conclusion

In this paper, we have studied a dynamic model of unilateral network formation. We have
extended the literature on non-cooperative network formation in two ways. First, we introduced
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a local approach, where agents are restricted to play local actions. Second, we developed a
framework of axiomatic payoff properties.

We proved the existence of local-Nash and global-Nash networks for games with payoff
functions that satisfy these properties. Further, we proved that our iterative procedure of local
actions always terminates at a local-Nash network, which is also global-Nash. In this context,
one way to continue the research is to obtain insights in the speed of termination, e.g. by
experiments.

Our framework of properties is inspired by the one-way flow model that is introduced by Bala
and Goyal (2000a). Besides the one-way flow model, Bala and Goyal (2000a) introduced another
model, called the two-way flow model. The only difference between the one-way and the two-
way flow model is that in the latter, profits flow in both directions of the links. Unfortunately,
our results do not apply to the two-way flow model, since one of our properties, BG, is not
satisfied here. To show this, consider the network g = {(j, i)} where (j, i) is beneficial. Now
consider the network g′ = g + (i, j). Here, agent i also observes j via (i, j), which implies that
his own link (j, i) is not beneficial in g′. A framework of payoff properties that does cover the
two-way flow model is examined by Derks and Tennekes (2008a).

Some properties that we introduced (DE, BT, and BF) are based on the assumption
that indirect connections are not always worse than direct connections. In other words, these
properties rule out information decay. The one-way flow model with decay can be realistic in
the context of social networks, e.g. in friendship networks where a friend is more valuable than
a friend of a friend. Further, our framework of payoff properties (especially NA) relies on the
fact that links are perfectly reliable. Several models with imperfectly reliable links are studied
in literature. It might be interesting to develop frameworks of axiomatic properties for these
models.

The architecture of Nash networks is strongly related with the class of payoff functions.
In this paper, proper networks play a prominent role. We proved existence of proper local-
and global-Nash, and our dynamic procedure terminates at a proper network. Observe that
proper networks also turn out to be essential in the one-way flow model. In fact, all Nash
network characterizations provided by Galeotti (2006) are proper networks when link costs
are (owner-)homogeneous. In Example 9 we showed that for our property framework, (strict)
Nash networks can have other architectures as well. It would be interesting to examine which
architectures are supported by other classes of payoff functions.

References

Bala, V., Goyal, S., 2000a. A non-cooperative model of network formation. Econometrica 68,
1181–1229.

Bala, V., Goyal, S., 2000b. A strategic analysis of network reliability. Rev. Econ. Design 5,
205–228.

Baron, R., Durieu, J., Haller, H., Savani, R., Solal, P., April 2008. Good neighbors are hard
to find: computational complexity of network formation. Review of Economic Design 12 (1),
1–19.

Billand, P., Bravard, C., Sarangi, S., 2008. Existence of Nash networks in one-way flow models.
Economic Theory 37 (3), 491–507, forthcoming in Economic Theory.

26



Derks, J., Kuipers, J., Tennekes, M., Thuijsman, F., 2008. Existence of Nash networks in the
one-way flow model of network formation, forthcoming in Neogy S. K. et al. (eds.), Modeling,
Computation and Optimization, World Scientific.

Derks, J., Tennekes, M., 2007. Payoff functions in the one-way flow model of network formation
for which Nash networks exist. Tech. rep., Maastricht University, Department of Mathematics.

Derks, J., Tennekes, M., 2008a. An axiomatic approach covering the two-way flow model of
network formation. Tech. rep., Maastricht University, Department of Mathematics.

Derks, J., Tennekes, M., 2008b. A note on the existence of Nash networks in one-way flow
models, forthcoming in Economic Theory.

Galeotti, A., 2006. One-way flow networks: the role of heterogeneity. Econ. Theory 29 (1),
163–179.

Galeotti, A., Goyal, S., Kamphorst, J., 2006. Network formation with heterogeneous players.
Games Econ. Behav. 54 (2), 353–372.

Garey, M., Johnson, D., 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco.

Grötschel, M., Lovász, L., Schrijver, A., 1981. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica 1 (2), 169–197, corrigendum: Combinatorica 4(4):
291-295 (1984).

Haller, H., Kamphorst, J., Sarangi, S., 2007. (Non-)existence and scope of Nash networks. Econ.
Theory 31 (3), 597–604.

Haller, H., Sarangi, S., 2005. Nash networks with heterogeneous links. Math. Soc. Sci. 50 (2),
181–201.

Iwata, S., Fleischer, L., Fujishige, S., 2001. A combinatorial strongly polynomial algorithm for
minimizing submodular functions. Journal of the ACM 48 (4), 761–777.

Jackson, M. O., 2005. A survey of the formation of networks: stability and efficiency. In:
Demange, G., Wooders, M. (Eds.), Group Formation in Economics; Networks, Clubs and
Coalitions. Cambridge University Press, Ch. 1.

Jackson, M. O., Watts, A., 2002. The evolution of social and economic networks. J. Econ.
Theory 106 (2), 265–295.

Jackson, M. O., Wolinsky, A., 1996. A strategic model of social and economic networks. J.
Econ. Theory 71 (1), 44–74.

Karp, R. M., 1972. Complexity of Computer Computations. Plenum Press, New York, Ch.
Reducibility Among Combinatorial Problems, pp. p.85–103.

Lee, H., Nemhauser, G., Wang, Y., 1996. Maximizing a submodular function by integer pro-
gramming: Polyhedral results for the quadratic case. Europ. J. Operations Res. 94, 154–166.

27



Lovasz, L., 1983. Submodular functions and convexity. In: Bachem, A., M. Grötschel and, B. K.
(Eds.), Mathematical Programming: The State of the Art. Springer, Berlin, pp. 235–257.

Nemhauser, G., Wolsey, L., Fisher, M., 1978. An analysis of approximations for maximizing
submodular set functions - I. Math. Program. 14, 265–294.

Van den Nouweland, A., 2005. Models of network formation in cooperative games. In: Demange,
G., Wooders, M. (Eds.), Group Formation in Economics; Networks, Clubs and Coalitions.
Cambridge University Press, Ch. 2.

Schrijver, A., 2000. A combinatorial algorithm minimizing submodular functions in strongly
polynomial time. J Comb. Theory B 80.

Watts, A., February 2001. A dynamic model of network formation. Games Econ. Behav. 34 (2),
331–341.

28


