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1 Introduction

Consider a group of agents who want to share profits, for instance valuable
information. The agents are able to link with other agents and thus form a
network. By this network they can share profits. Each agent pays costs for each
link that he formed and receives profits for being connected to other agents.

In this paper we study a model of unilateral network formation that is in-
troduced by Bala and Goyal (2000). In this model, an agent can form a link
unilaterally, i.e. without consent of the other agent. On the basis of the formed
network, each agent gets a payoff, which consists of a costs and a profits part.
Each agent pays some costs for each link that he forms. For the profits part,
two different settings are considered, the one-way and the two-way flow model.

In the one-way flow model, a link that agent i forms is represented by an
arc poining at i. Here, agent i receives a certain profit from being connected to
agent j, which is the case if and only if a directed path from j to i exists. In
other words, the profits flow along the direction of the arcs. In Figure 1a an
example of a one-way flow network is given. Here, agent 1 is not connected to
anyone and agents 2 and 3 are only connected to agent 1.

In the two-way flow model, a link that agent i forms is depicted as a line
that is cut by a short line next to agent i. Agent i receives profits from being
connected to agent j, if and only if an undirected path exist between them. In
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Figure 1: Examples of a one-way flow network (a), and a two-way flow network
(b).

the two-way flow network depicted in Figure 1b, agents 1, 2 and 3 are connected
to each other. Thus, the difference between the one-way and the two-way flow
model is that in the latter, profits can flow in both directions of a link.

For the one-way flow model, Bala and Goyal (2000) prove the existence of
Nash networks for payoff functions where link costs and profits are homoge-
neous, i.e. all links are equally expensive and all agents have the same profits.
Furthermore, they characterize the architecture of these Nash networks. Gale-
otti (2006) extended the one-way flow model, by allowing link costs and profits
to be hetereogeneous. He charaterizes (strict) Nash networks for various set-
tings of heterogeneity. The existence of Nash networks for payoff functions with
heterogeneous profits and owner-homogeneous link costs, i.e. all link costs are
equally expensive with respect to the agent who forms them, has been proved
simultaneously by Derks et al. (2008a) and by Billand et al. (2007). A short and
elementary proof based on the former has been provided by Derks and Tennekes
(2008b).

The two-way flow model has first been studied by Bala and Goyal (2000)
and has then been extended by Galeotti et al. (2006) and Haller et al. (2007).
Bala and Goyal (2000) prove the existence of Nash networks and characterize
the architecture of these networks for payoff functions with homogeneous link
costs and profits. Galeotti et al. (2006) extend this model by introducing het-
erogeneous link costs and profits. They charaterize the architecture of (strict)
Nash networks. The existence of Nash network for payoff functions with het-
erogeneous profits and homogeneous link costs has been proved by Haller et al.
(2007).

A model of unilateral network formation that covers the one-way flow model,
has been studied by Derks et al. (2008b). They develop axiomatic properties
for payoff function in such a way that they are intuitive and that they imply
the existence of Nash networks. A full characterization of one-way flow payoff
functions that satisfy these properties has been provided by Derks and Ten-
nekes (2008a). They show that all one-way flow payoff functions with owner-
homogeneous link costs satisfy these properties, as well as a subset of payoff
functions with heterogeneous profits and link costs.

However, the axiomatic framework by Derks et al. (2008b) does not imply
all two-way flow payoff functions. In this paper we develop axiomatic payoff
properties that are intuitive in the context of the two-way flow model. With
these payoff properties we prove the existence of Nash networks. We do this
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by generalizing the short and elementary proof by Haller et al. (2007). We
give a full characterization of the two-way flow payoff functions that satisfy our
properties.

We show that there are payoff functions with negative profits that satisfy
these properties. Furthermore, we show that the links can be divided in two
groups with respect to the owner: one with unaffordable links, and one with
equally expensive links. Therefore, the formed network will only consist of af-
fordable links. Hence we have a nice enhancement of the two-way flow model,
namely where agents are restricted to form a specific set of links, i.e. the af-
fordable links.

Furthermore, we provide examples of payoff functions that fall outside the
scope of the two-way flow model, while they satisfy all our properties. These
functions also take other properties of the network architecture into account,
for instance the set of agents that are contained in a cycle.

2 Model

Let N be a finite set of agents. A link from agent j to i is denoted as (j, i). A
network is defined as a set of links. Formally, a network is defined by g ⊆ N×N

on the fixed set of agents N where loops are not allowed, i.e. (i, i) 6∈ g for all
i ∈ N . Let G be the set of all these networks.

For convenience we will use the symbol ’+’ for the union of two networks as
well as for the union of a network with a single link, e.g. g ∪ g′ ∪ {(j, i)} equals
g + g′ + (j, i).

For each agent i, let πi : G → R be a payoff function. In this paper we
introduce axiomatic properties for payoff functions. These properties are based
on the payoff functions of the one-way flow model studied by Bala and Goyal
(2000) and generalized by Galeotti (2006). We will refer to such specifif payoff
functions as B&G-2 functions.

Before defining the B&G-2 functions, we need the following notation. Let
Ni(g) be the set of agents that i observes in g, i.e. the set of agents from whom
an directed path to i exists in g and let Nd

i (g) be the set of agents from whom
a link pointing at i exists in g.

Payoff function πi(g) is called a B&G-2 function if

πi(g) = vi(Ni(ḡ)) − ci(N
d
i (g)) (1)

where ḡ is defined as the undirected version of network g, i.e. ḡ = {(j, i) :
(j, i) ∈ g or (i, j) ∈ g}, and where vij are the profits that i receives from being
connected to j, which is the case if an undirected path between them exists in g,
and where cij are the link costs. Here, we use the following shorthand notation:
vi(S) =

∑

j∈S vij and ci(S) =
∑

j∈S cij .
We say that link costs are homogeneous if there is a constant c with cij = c

for all i, j ∈ N . We say that link costs are owner-homogeneous if for each agent
i there is a constant ci with cij = ci for all j ∈ N . Otherwise, the link costs are
heterogeneous. Analog definitions apply to the profits.
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Existence of Nash networks where link costs and profits are homogeneous,
is proven by Bala and Goyal (2000). Haller et al. (2007) show that Nash net-
works also exist when profits are heterogeneous. Furthermore, they provide a
counterexample where Nash networks do not exist when link costs are hetero-
geneous.

The following payoff functions are called one-way flow payoff functions (ref-
ered to as B&G-1 functions).

πi(g) = vi(Ni(g)) − ci(N
d
i (g)) (2)

The difference between B&G-1 and B&G-2 functions is that in the one-way
flow case an agent i only receives profits vij if j ∈ Ni(g), i.e. if a direct path
exists in g from j to i, while in the two-way flow case an agent i receives profits
vij if j ∈ Ni(ḡ), i.e. if an undirected path exists between j and i in network g.

We define an action of agent i as a set of agents, denoted as Si ⊆ N \ {i}.
The network, after i chooses to link with the agents in Si, is described by

g−i + {(j, i) : j ∈ Si}.

Here, g−i = g \ gi is the network g with all i’s links removed. The union of all
the actions of all agents in N define the outcome network.

An action Si of agent i is called a best response if

πi

(

g−i + {(j, i) : j ∈ Si}
)

≥ πi

(

g−i + {(j, i) : j ∈ Ti}
)

,

for all actions Ti. A network g is called a Nash network if Nd
i (g) is a best

response for all i ∈ N .

3 Axiomatization

In this section, we develop intuitive axiomatic payoff properties for the two-
way flow model, in such away that we are able to prove the existence of Nash
networks. For this purpose, we will use the constructive proof provided by
Haller et al. (2007). This proof shows that Nash networks exist for games with
homogeneous link costs and heterogeneous profits. We develop axiomatic payoff
properties such that this proof holds for a more general class of payoff functions.

The first property that we introduce, disjoint additivity, is also used in our
framework in chapter 4.

Property DA We say that a payoff function π is disjoint additive (DA for
short), if for each two networks g and g′, disjoint w.r.t. an agent i, we have

πi(g + g′) = πi(g) + πi(g
′).

Recall from chapter 4 that link (j, i) be called profitable if:

πi(g) ≥ πi(g − (j, i)) if (j, i) ∈ g,
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and
πi(g + (j, i)) ≥ πi(g) if (j, i) 6∈ g.

Further, recall that a link (j, i) is called beneficial in network g whenever

πi(g−ij) ≥ πi(g
j
−i),

where g−ij = g
j
−i + (j, i). Thus, the influence of a single link is measured in a

network without own links.
The following result is analog to Lemma ??.

Lemma 1 If network g is minimal, and π is disjoint additive, then profitability
and beneficiality are equivalent notions, more specifically,

πi(g) − πi(g − (j, i)) = πi(g−ij) − πi(g
j
−i) for all (j, i) ∈ g (3)

πi(g + (j, i)) − πi(g) = πi(g−ij) − πi(g
j
−i) for all (j, i) 6∈ g where j 6∈ Nu

i (g)

(4)

Proof. First, let (j, i) ∈ g. Since g is minimal, g−ij and g − g−ij are i-disjoint.
Therefore, by DA we have

πi(g) = πi(g−ij) + πi(g − g−ij). (5)

Since g is minimal, g − (j, i) is also minimal. Hence by DA we obtain

πi(g − (j, i)) = πi(g
j
−i) + πi(g − g

j
−i − (j, i)). (6)

Since g − g−ij = g − g
j
−i − (j, i), we obtain (3) from (5) and (6).

Now, let (j, i) 6∈ g. Since g is minimal, and j 6∈ Nu
i (g), networks g

j
−i and

g − g
j
−i are i-disjoint. By DA we obtain

πi(g) = πi(g
j
−i) + πi(g − g

j
−i). (7)

We have g + (j, i) = g−ij + (g − g
j
−i). Since j 6∈ Nu

i (g), it follow that g−ij and

g − g
j
−i are i-disjoint. Hence by DA we obtain

πi(g + (j, i)) = πi(g−ij) + πi(g − g
j
−i). (8)

Hence, (4) follows from (7) and (8). �

The next property is proposed in chapter 4.

Property NA We say that π satisfies NA (naturality) if πi(g + (k, i)) ≤ πi(g)
whenever there is a directed path from k to i in the network g.

According to this property, for each agent k ∈ Ni(g) where link (k, i) is not
yet contained in g, agent i’s payoff will not increase after adding (k, i) to g. This
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property is very intuitive in the one-way flow case, because of the following. In
the one-way flow network depicted in Figure 2a, there is a directed path from
k to i. Agent i already observes k, so he will not be better off by forming the
direct link (k, i). However, in the two-way flow case, agent i also observes k if
an undirected path exists between them (see Figure 2b). Therefore we propose
the following alternative.

i

k

i

k

(a) (b)

Figure 2: Agent i is connected to k in the one-way flow case (a) and in the
two-way flow case (b).

Property NA2 We say that π satisfies NA2 (naturality in the undirected case)
if πi(g + (k, i)) ≤ πi(g) whenever there is a undirected path from k to i in the
network g.

Observe that by this property, minimal networks are preferred over non-
minimal networks. More specifically, for any non-minimal network g, an agent
exists who can play a good local response by deleting a redundant link.

In the following theorem we show that for payoff functions that satisfy DA
and NA2, each minimal local-Nash network is also a global-Nash network.

Theorem 2 Let π satisfy DA and NA2. Then each minimal local-Nash network
is global-Nash.

Proof. Let g be a minimal local-Nash networks. Suppose to the contrary that
g is not global-Nash, say i can strictly improve in g. Let S = Nd

i (g) be his
current action, and let S̃ be a strictly improving action, such that |S̃ \ S| is as
small as possible and such that among those, |S \ S̃| is as small as possible. Let
g̃ be the network obtained after i plays S̃.

Let j ∈ S̃ \ S. Suppose that j ∈ Nu
i (g). Then by NA2, the action S̃ − j is

at least as good as S̃, with |(S̃ − j) \ S| < |S̃ \ S|. Hence we have a derived a
contradiction.

Hence j 6∈ Nu
i (g). By NA2 we may assume that g−ij is i-disjoint from

g̃ − g−ij . Hence by DA we obtain

πi(g̃) = πi(g̃ − g−ij) + πi(g−ij), and (9)

πi(g̃ − (j, i))= πi(g̃ − (j, i) − g
j
−i) + πi(g

j
−i). (10)

Since g is local-Nash, we have πi(g + (j, i)) ≤ πi(g). By Lemma 1, it follows
that πi(g−ij) ≤ πi(g

j
−i). Hence by (9) and (10) we obtain πi(g̃) ≤ πi(g̃ − (j, i)).
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Hence S̃ − j is at least as good as S̃, with |(S̃ − j) \ S| < |S̃ \ S|. This is a
contradiction.

Hence we conclude that S̃ ⊆ S.
Let j ∈ S \ S̃. Since g is minimal local-Nash, (j, i) is profitable and by

Lemma 1 also beneficial. Since g̃ ⊂ g, network g̃ is also minimal. Hence it
follows that (j, i) is also profitable in g̃. Hence S + j is at least as good as S,
with |S \ (S̃ + j)| < |S \ S̃|. This is a contradiction.

Hence we conclude that S̃ = S, which contradicts S̃ being a strict improve-
ment. Hence, g is global-Nash. �

The following property has been proposed in chapter 4.

Property BG Payoff function π satisfies BG (beneficial growth) if πi((g +
(k, r))−ij) ≥ 0 for each pair of agents k, r, whenever πi(g−ij) ≥ 0.

However, it does not apply to all B&G-2 payoff functions. To see this, con-
sider a network g where agent i has one link, say (j, i), by which he can observe
all agents in a subset of agents S. Thus, the B&G-2 function is the following:
πi(g−ij) = vi(S) − cij . Now, let agent r ∈ S add the link (i, r). Then, agent i

can observe all agents in S by that link, which makes his own link redundant.
Hence πi((g + (k, r))−ij) < πi(g−ij) if the link cost cij is strictly positive, and
therefore it may be that πi((g + (k, r))−ij) < 0 while πi(g−ij) ≥ 0. We can fix
this by the following refinement.

Property BG2 Payoff function π satisfies BG2 (beneficial growth in the undi-
rected case) if πi((g+(k, r))−ij) ≥ πi((g+(k, r))j

−i) for each pair of agents k, r,

whenever g + (k, r) is minimal and πi(g−ij) ≥ πi(g
j
−i).

Thus, a link remains beneficial if another agent adds a link such that the
obtained network is minimal. The intuition behind this property is that in
a minimal network, at most one undirected path exists between each pair of
agents. Hence, the set of agents observed by agent i via link (j, i) in a minimal
network g, is also observed via (j, i) in the minimal network g + (k, r).

The last property that we introduce is very demanding.

Property RP Payoff function π satisfies RP (replacement) if the following
holds. Let g be a minimal network where (j, i) ∈ g. If (j, i) is beneficial, then
πi(g−ik) ≤ πi(g−ij), for each agent k ∈ Car(gj

−i).

Thus, if a link is beneficial, then a replacement by another link in the same
component is not an improving action. The intuition behind this property is the
following. Our aim is to design a property such that beneficial links in a minimal
network remain beneficial after a replacement. We do not want to encourage
replacements inside a component, because of the following situation. Consider
the network g depicted in Figure 3(a). Consider the replacement of (j, i) by
(k, i) where the obtained network g′ is depicted in Figure 3(b). Now focus
on link (j, r). In network g, agent r observes 5 agents via this link, including
agent i, whereas in network g′, he only observes 2 of these agents. When we
consider B&G-2 functions, this implies that link (j, r) can be beneficial in g
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but not anymore in g′. By this argument, we discourage replacements inside a
component with the property RP.

i

k

j
r

i

k

j
r

(b) Network g’(a) Network g

Figure 3: A replacement

Now we generalize the result of Haller et al. (2007), which is that Nash net-
works exists for B&G-2 functions with heterogeneous profits and homogeneous
link costs. We reconstruct their constructive proof where we implement the
payoff properties DA, NA2, BG2 and RP.

Theorem 3 Let π be a payoff function that satisfies DA, NA2, BG2 and RP.
Then a minimal, local-Nash network exists.

Proof. By iteration, we construct a minimal network which is local-Nash,
beginning with the empty network. Observe that the empty network is minimal
and beneficial.

Let g be any minimal and beneficial network and not local-Nash, say i can
improve.

By Lemma 1 it follows that each link in g is profitable, and therefore i does
not gain from removing a link.

Because of RP, player i does not strictly prefer to replace link (j, i) with
(k, i), where k ∈ Car(gj

−i).
Consequently, i agent is better off by adding a new link, say (j, i). Let the

obtained network be g′ = g + (j, i). By NA2, we may assume that j 6∈ Ni(g).
Hence g′ is also minimal. Since (j, i) is profitable in g′, it follows by DA and
Lemma 1 that link (j, i) is also beneficial in g′. Further, the other links in g′

are beneficial by BG2. Hence, g′ is beneficial.
Since g′ is minimal and beneficial we can repeat this step if g′ is not local-

Nash, until we obtain a local-Nash network. At each iteration, a link is added,
and therefore, the network grows. Since a minimal network of n agents has at
most n−1 links, we know that in finitely many iterations we obtain a local-Nash
network. �

8



Since the network that we obtained in this proof is minimal, we obtain the
following corollary from Theorem 2.

Corollary 4 For any payoff function that satisfies DA, NA2, BG2 and RP, a
global-Nash network exists. Specifically, a minimal, global-Nash network.

4 Property independence

The following payoff function satisfies all properties, except DA:

πi(g) = |Ni(ḡ)|2 (11)

Property DA is not satisfied, because for any two i-disjoint networks g and
g′ where i ∈ Car(g) ∩Car(g′), we have |Ni(ḡ)|2 + |Ni(ḡ

′)|2 < |Ni(ḡ ∪ ḡ′)|2. The
properties NA2, BG2 and RP are clearly satisfied.

The following payoff function satisfies all properties, except NA2:

πi(g) = |Nd
i (g)| (12)

Property NA2 is not satisfied, because for any network g where (k, i) is not
present, we have πi(g + (k, i)) = πi(g) + 1, hence also if a path exists between
k and i. Property DA is clearly satisfied. Properties BG2 and RP are satisfied
because πi(g−ij) = πi(g−ik) for any network g and any two agents j and k.

The following payoff function satisfies all properties, except BG2:

πi(g) = −|Ni(ḡ)| (13)

Property BG2 is not satisfied here, because two components may be con-
nected to each other by the addition of a link, such that the obtained network
is minimal and such that agent i observes strictly more agents. Properties DA,
NA2 and RP are clearly satisfied.

The following payoff function satisfies all properties, except RP :

πi(g) =
∑

component g′⊆g

{

|Nd
j (g′)| if Nd

i (g′) = {j};
0 otherwise.

(14)

This payoff function does not satisfy RP, because in a connected and minimal
network, where agent k has more links than j, we have that πi(g−ij) < πi(g−ik).
Property DA is satisfied because this payoff function is built up componentwise.
Property NA2 is satisfied because if agent i has two links or more in one compo-
nent, then his payoff is lower than any other payoff. Property BG2 is satisfied,
because πi(g−i) = 0 for all networks g, and all other payoffs are non-negative.
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5 Characterization

Now we would like to know to what extend we generalized the result of Haller
et al. (2007) for B&G-2 functions. In other words, the question is which B&G-2
functions satisfy the properties DA, NA2, BG2 and RP, and therefore imply
the existence of local- and global-Nash networks.

It can be easily seen that NA2 is satisfied whenever cij ≥ 0. We will refer to
this non-negativity as NNC (non-negative link costs). Property DA is clearly
satisfied by all B&G-2 functions. The following lemma characterizes the set of
B&G-2 functions that satisfy BG2.

Lemma 5 Let π be a B&G-2 payoff function. Then π satisfies BG2 if and only
if the following property holds:

PBG If cij ≤ vi(S) for agent set S ⊂ N and agent j ∈ S, then cij ≤ vi(S
′)

for all S′ ⊃ S.

Proof. First suppose that PBG does not hold. Then a set S ⊂ N , a set S′ ⊃ S,
and an agent j ∈ S exist such that cij ≤ vi(S) and cij > vi(S

′). Consider a
minimal network g where i has one incoming link, (j, i), and no outgoing links.
Thus, πi(g−i) = 0. Furthermore, let all agent in S form a component and all
agents in S′ \ S form a component. Let k be an agent in S and let r be an
agent in S′. Since (j, i) ∈ g, and j ∈ S we have πi(g) = vi(S) − cij ≥ 0, and
πi(g + (k, r)) = vi(S

′) − cij < 0. Hence, BG2 is not satisfied.
Now suppose that BG2 does not hold. Then a network g exists such that

link (k, r) 6∈ g, network g + (k, r) is minimal, πi(g−ij) ≥ πi(g−i), and πi((g +
(k, r))−ij) < πi((g + (k, r))−i). Let S be the set of agents that i observes in g

using link (j, i). For network g+(k, r), let S′ be the set of agents that i observes
using (j, i). Notice that since g and g + (k, r) are both minimal networks, i

uniquely observes S and S′ via (j, i). Hence πi(g−i) = πi((g + (k, r))−i) = 0.
Since BG2 does not hold, S and S′ can not be equal. Therefore, S′ ⊃ S. We
have 0 ≤ πi(g−ij) − πi(g−i) = vi(S) − cij , and 0 > πi((g + (k, r))−ij) − πi((g +
(k, r))−i) = vi(S

′) − cij . Hence we have obtained cij ≤ vi(S) and cij > vi(S
′).

Thus we conclude that PBG is not satisfied. �

Notice the similarity between the characterization of BG2 with respect to
B&G-2 functions and the characterization of BG with respect to B&G-1 func-
tions.

The next lemma characterizes what B&G-2 functions satisfy property RP.

Lemma 6 Let π be a B&G-2 payoff function. Then π satisfies RP if and only
if the following property holds:

PRP If cij ≤ vi(S) for agent set S ⊆ N and agent j ∈ S, then for each
k ∈ S it holds that either cik = cij or cik > vi(S).
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Proof. Suppose that PRP is not satisfied. Then a set S ⊂ N and agents j, k ∈ S

exist where cij ≤ vi(S) and cik 6= cij and cik ≤ vi(S). Without loss of generality
we may assume that cik < cij . Consider a network g where i observes set S in
both g−ij and g−ik. Hence, πi(g−ij) = vi(S)− cij < vi(S)− cik = πi(g−ik), and
therefore, RP is not satisfied.

Now suppose that RP is not satisfied. Then a minimal network g exists,
where (j, i) ∈ g, where πi(g−ij) ≥ πi(g−i), where k ∈ g

j
−i and where πi(g−ik) >

πi(g−ij). Let S be the set of agents that i observes by (j, i), i.e. S = Car(gj
−i).

Since g is a minimal network, it follows that 0 ≥ πi(g−ij)−πi(g−i) = vi(S)−cij ,
and hence that cij ≤ vi(S). Since 0 < πi(g−ij) − πi(g−ik) = cik − cij , it follows
that cik < cij . Therefore we have that cik ≤ vi(S) and cik 6= cij ; a contradiction
with PRP. �

Hence we derive the following theorem from Corollary 4.

Theorem 7 Let π be a B&G-2 payoff function. Then a global-Nash network
exists when

(NNC) cij ≥ 0 ∀j ∈ N , and

if cij ≤ vi(S) for agent set S ⊆ N and agent j ∈ S then

(PBG) cij ≤ vi(S
′) ∀S′ ⊇ S, and

(PRP) cik = cij or cik > vi(S) ∀k ∈ S

Hence, there exists B&G-2 functions with negative profits for which global-
Nash networks exist. The following theorem shows that PBG and PRP imply
links can be divided in two groups: one with affordable, owner-homogeneous
links, and one with unaffordable links (i.e. cij > vi(N)).

Theorem 8 Let π be a B&G-2 payoff function that satisfies PBG and PRP. If
cij ≤ vi(S) for a set S and an agent j ∈ S, then for each k ∈ N either cik = cij

or cik > vi(N).

Proof. By PBG it follows directly that if cij ≤ vi(S) for some agent j

and set S, then cij ≤ vi(N). By PRP this implies that for each k ∈ N , either
cik = cij or cik > vi(N). �

In Figure 4 we show the characterization of B&G-2 functions graphically.
Each area corresponds to a specific subset of B&G-2 functions. Area 8 corre-
sponds to B&G-2 functions that satisfy NNC, PBG and PRP. Recall that each
B&G-2 function trivially satisfies DA. Therefore, local- and global-Nash net-
works exist for each game with a B&G-2 function in area 8. For each area, an
example of a B&G-2 function is given in Table 1. In these examples, 3 agents
are involved, except for area 3 where 4 agents are involved1.

1It can be verified that an example with 3 agents for area 3 does not exist.

11



PRP

NNC

PBG

4

2

8

3

5

6

1

7

Figure 4: The characterization of B&G-2 functions.
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Table 1: Characterization of the eight area’s in Figure 4

Area Properties Example
PRP NNC PBG cij cik ciℓ vij vik viℓ

1 n n n -1 0 0 -2
2 n n y -1 3 2 1
3 n y n 0 1 0 1 1 -1
4 n y y 0 1 0 1
5 y n n -1 -1 0 -2
6 y n y -2 -2 0 1
7 y y n 2 2 2 -1
8 y y y 2 2 3 -1

We cannot draw conclusions by comparing this characterization with the
characterization of B&G-1 functions in chapter 6, because the profits are used
differently in B&G-1 and B&G-2 functions. We can just observe that in both the
one- and two-way flow model, the existence of global-Nash networks is guaran-
teed for games with owner-homogeneous link costs, and non-negative link costs
and profits.

By Theorem 7, we know that for the two way flow model, local- and global-
Nash networks also exist for games with negative profits and owner-homogeneous
link costs. Recall from chapter 2 that this result does not hold for B&G-1 func-
tions (see Example ??).

Furthermore, we know that local- and global-Nash networks exist for games
with two groups of links: the first group contains links with owner-homogeneous
costs, and the second group contains unaffordable links. From this observation
we obtain the following enhancement of the two-way flow model. Each agent
is restricted to form a subset of links. Formally, define an action of agent i as
Si ⊆ Mi, where Mi ⊆ N \ {i}. Thus, agent i can only link with agents in Mi.
Clearly, this enhanced model is equivalent with the original model where each
link (j, i) is affordable if j ∈ Mi and unaffordable if j 6∈ Mi.

The following payoff functions show that our axiomatic approach yields a
generalization of B&G-2 functions.

πi(g) = |SPi(ḡ)| − |Nd
i (g)|; (15)

πi(g) = |C(ḡ) ∩ Ni(ḡ)| − |Nd
i (g)|, (16)

where SPi(ḡ) is the number of spokes that i observes in ḡ and C(ḡ) is the number
of agents that are contained in a directed cycle in ḡ. These two payoff functions
satisfy all properties, i.e. DA, NA2, RP and BG2. They fall outside the scope of
B&G-2 functions, because B&G-2 functions only take the sets Ni(g) and Nd

i (g)
into account, while the payoff functions (15) and (16) also take other properties
of the network architecture into account.
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